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Abstract

We introduce a novel method to assess the well-recognised risk of overlap-

ping portfolios by means of price impact of asset deleveraging on a security-by-

security basis from traded volumes and returns. Our new price-at-risk measure

evaluates the tail risk of possible market price movements. Systemic risk within

the euro area financial system of banks and investment funds is assessed by

considering contagion between individual institutions’ portfolio holdings. We

show that homogeneous estimation techniques might lead to more than twice

as large loss estimates than our heterogenous parameters, furthermore, system-

level losses at the tail can be three times higher than average losses.
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1 Introduction

In the past years, a growing amount of literature has been documenting the im-

portance of common holdings of assets in spreading market stress via a mechanism

referred to as indirect financial contagion whereby financial institutions may be forced

to sell assets to acquire liquidity amidst distressed financial situations. The selling of

securities implies price declines which cause losses to other institutions holding those

specific securities marked-to-market in their trading book. This mechanism may lead

to a spiral of price declines and further liquidity needs, similarly to Brunnermeier and

Pedersen (2009) and Greenwood, Landier, and Thesmar (2015).

The severity of the decline depends on the complexity of portfolio similarities, creating

deeply connected overlapping portfolios. In the post-financial crisis era, these over-

lapping portfolios are recognised as a major potential source of systemic risk. This

risk, originating from mechanisms of joint asset deleveraging, depends on a notion of

market price impact, which must consequently play a central role in the modelling of

the system-wide dynamics of the financial system. This provides a compelling moti-

vation for an in-depth understanding of the mechanisms of market price impact, and

for deploying analytical models able to capture this source of contagion.

This paper touches upon two strands of the literature. The first is the price impact
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literature, defined as the change in price as a result of individual trades. One of

the earlier research on price impact was performed by Kyle (1985), in which price

dynamics are modelled following a linear equilibrium model. In this setup, three

market participants influence the price based on asymmetric information. All else

being equal, the linear price change is a function of size. The framework introduced

by Kyle is a common starting point price impact models developed at a later stage.

Further research regarding the dependence between volume and price changes consis-

tently shows decreasing impact severity per traded increment, resulting in a concave

impact (see Almgren et al., 2005 and Tóth et al., 2011). Other research regarding

individual or independent traded volumes (see Lillo, Farmer, and Mantegna, 2003;

Potters and Bouchaud, 2003; Gabaix et al., 2003; Farmer, Patelli, and Zovko, 2005)

also concluded concave dependencies between traded volumes and subsequent price

changes. Huberman and Stanzl (2004) specify that a linear price change could be

described as a linear function of size, provided a constant liquidity and permanent

impact, to prevent arbitrage. Moreover, they discover also that in practice market

liquidity fluctuates by orders of magnitude, significantly affecting price change dy-

namics.

Bouchaud, Farmer, and Lillo (2009) study the adaptation of new information into

the price of a security and find a slow process causing prices to be affected long after

the information became public. Patzelt and Bouchaud (2018) extend this research by

analysing the limit order book and the aggregated price fluctuations observed therein.

They find a relatively stable concave impact curve across all intra-day time scales.

The exact shape of the impact curve is further debated in several publications. For

example, Bouchaud, Farmer, and Lillo (2009) find strong evidence in favor of a square-

root impact function from segmented meta-orders. While in Cont and Wagalath

(2016) the authors develop an econometric framework for the forensic analysis of
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fire sales episodes, which is characterised by an exponential price impact form. This

same exponential function has been implemented in several works on spillover effects

and contagion due to portfolio deleveraging and fire sales (Cont and Schaanning,

2017; Caccioli, Ferrara, and Ramadiah, 2020). However, to our knowledge, price

impact, by means of capturing quantiles of the entire distribution in combination

with an exponential impact function to model contagion from large scale portfolio

deleveraging, has not been introduced yet.

The literature regarding contagion through marketable assets is the second subject

that this paper investigates. In an important publication by Shleifer and Vishny

(2011) the authors show heavily discounted prices of assets that needed to be liqui-

dated in some form of fire sale. Similar work for the banking sector is done by Khan-

dani and Lo (2008), Cont and Wagalath (2016), and Glasserman and Young (2016)

and Benoit et al. (2017), where financial institutions experience forced deleveraging

as a result of a financial shock, analysed by means of excellent surveys. The sem-

inal papers by Allen and Gale (2000) and Kiyotaki and Moore (2002) describe the

workings of contagion, based on balance sheet interlinkages, following small shocks

originating from a specific sector of the economy but with a spreading effect through

the entire system when the market is incomplete. Among many other contributions,

this effect is also documented in the papers by Dasgupta (2004) or Allen and Gale

(2018). Following a similar approach, Cont and Schaanning (2019) analyse the vul-

nerability of the European banking system to indirect contagion as a consequence

of forced portfolio deleveraging. For a more general overview on different aspects of

financial contagion discussed in the literature, which are not directly relevant for this

study, see Ahnert and Bertsch (2022)1.
1This paper discusses, for instance, the wake-up call contagion effect as another form of contagion,

whereby a crisis in one region is a wake-up call to investors that induces them to re-assess and inquire
about the fundamentals of other regions. Such updated risk assessment can lead to a contagious
spread of a financial crisis across different regions.
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Chaderina, Mürmann, and Scheuch (2018) argue that institutional investors tend to

sell liquid assets first causing trades to be focused on a specific selection of assets,

which might lead to a more pronounced price drop for liquid assets than for illiquid

ones. Similar to studies by Greenwood, Landier, and Thesmar (2015), the authors

assume a linear relation between sold assets and the subsequent price change. How-

ever, there is abundant empirical evidence of a sub-linear price impact dependence

on traded volumes (see Bouchaud, 2010 and Bershova and Rakhlin, 2013).

In contrast to these more traditional methods of point-in-time estimations, Adrian

and Brunnermeier (2011), Engle and Manganelli (2004), and the research by Adrian,

Boyarchenko, and Giannone (2019) implement quantile regression based value-at-risk

analyses. The reason for implementing a quantile regression, rather than a traditional

single point forecasting method, is that a quantile regression allows for a distribution

of predictions, providing a prediction for the events at the tail of the distribution and

not just a median or mean prediction.

The aim of our research is to incorporate the theoretical findings of non-linear price

impact relations in combination with a quantile regression approach in order to bet-

ter explain tail events in the propagation of losses due to contagion from market

price impacts. To our knowledge, we are the first in making an attempt to estimate

security-level price impact functions from individual historical prices using a non-

linear quantile regression. Using these parameters and granular securities holdings

statistics, we are able to estimate potential contagion losses in the event of system-

wide or individual liquidity needs in the financial system.

Moreover, our work is also related to work on tracing the impact of asset purchase

programmes on asset prices. Altavilla, Carboni, and Motto (2015), Eser et al. (2019),

Rostagno et al. (2021) have, for instance, investigated the impact of asset purchase

programmes and unconventional monetary policies on financial markets. These stud-
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ies distinguish between flow effects and stock effects, where the first one is covering

the price effect from actual trading, the second one is capturing the impact from in-

vestors’ beliefs at the announcement of changes in the policy stance. The framework

in this paper, using traded volumes, is therefore closer to the estimation of flow effects

under tail events.

The rest of the paper is structured as follows. In section 2, we review existing price

impact estimation methodologies and motivate our own approach using quantile re-

gressions. Section 3 describes the dataset used in this paper. Section 4 shows results

of price impact parameter estimations at aggregate level and price impact function

behaviour for selected trade volumes. In section 5, we use these parameters in a

fire sale contagion model to estimate endogenous market losses in a financial system

of banks and investment funds. In this exercise, we assume a constant exogenous

redemption shock for the whole investment fund sector leading to fire sales of finan-

cial assets in the system, which in turn causes contagion effects due to overlapping

portfolios.

2 Methodology

Before delving into the detailed dynamics of the spread of financial contagion via

overlapping portfolios, one should have a good understanding of the individual com-

ponents related to this topic. This begins with the explanation of the general features

of a financial market, also known as exchange. Strictly speaking a financial market

is a place where supply of and demand for financial products come together. The

financial products usually refer to products that provide monetary finance to the

supplier of a product. For example a non-financial corporation is looking to expand

their business for which it needs some form of financing. Broadly speaking this cor-

poration can turn to a financial market to sell part of the company in exchange for

6



funding (i.e. equity funding) or acquire a loan type product such as a bond. There

exist more complex financial products that base their price on the value of a different

financial product, these are called derivatives. For the scope of this work, only bond

and equity instruments are considered.

Originally, financial markets were physical markets where market participants came

together to trade their products. Thanks to technological developments, modern fi-

nancial markets are electronic systems, mainly handled by computational algorithms.

These markets also developed a new type of trade, referred to as continuous-time

double-auction mechanism. A double auction market allows both buyers and sellers

to submit the number of financial products they desire to trade (i.e. volume) and

the preferred price against which they are willing to trade the products. This type

of submission of an order is called a limit order and is stored in the exchange’s limit

order book (LOB). A participant placing a limit order is also referred to a liquidity

provider (or maker), since they add liquidity to the market. The limit order can

either be cancelled from the order book (i.e. removed without it being traded) or

accepted by another market participant, which results in a trade. The market par-

ticipant, who desires to accept an outstanding limit order, submits a market order.

A participant placing a market order is also referred to a liquidity taker (taker for

short), since they remove liquidity from the market. At each moment in time, the

highest price in the LOB offered for the purchase of a financial product is the best

bid price. Conversely, the best ask price refers to the lowest price a product can be

bought for. As mentioned above, a limit order contains both a price and a volume

(in number of securities), while a market order only specifies a volume to be bought

or sold, the price is determined by the best available price at that moment. In case

the volume of a market order is larger than the available volume against current best

price, the access volume is executed against the next best price.

The above mentioned case shows that market orders might eat into limit order vol-
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ume, when market orders come in faster than newly submitted limit orders or a

substantially large market order has been executed, the best available price in the

LOB gets affected, i.e. trades consume liquidity and impact prices. Consequently,

buy trades push prices up while sell trades drag prices down (see Bouchaud et al.,

2018). The magnitude of the impact is, therefore, related to the volume size of the

traded order. Hence, a market participant has the incentive to carefully select the

execution size, in order to minimize execution costs, as a consequence of her trade.

A simple solution is to split-up large volumes into smaller sized orders referred to as

metaorders. Much of the development of price impact functions are built around the

execution of several metaorders over a given period of time. The following section

explains the methodology behind some common theoretical models that attempt to

explain the relation between these metaorders and the subsequent price change.

2.1 Price impact modelling

The foundation of most price impact models is derived from the linear price impact

specification described within Kyle’s framework (see Kyle, 1985). In the setup of

this model, there are three market participants, informed traders, uninformed trades,

and the market-maker. Informed traders have some knowledge of the fundamental

price of a security and try to exploit this information by trading a certain quantity

of this security, accordingly. The uninformed traders behave like a random variable

and do not affect the price. The market-makers adjust their inventory to match the

incoming market orders. However, they do not know the fundamental price. Since

the informed traders do know the fundamental price, their objective is to maximize

profits by taking advantage of mispriced securities. Kyle (1985) assumes that the

market-makers fix the price given a linear model of overall trade volumes:
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p = p0 + λv. (1)

In this context the impact coefficient, denoted by λ (known as Kyle’s lambda) is a

parameter inversely proportional to the market depth; the impact on price is then

written as:

Ψ = λv. (2)

The market-maker chooses λ to get E[p∗|v] = p, where p∗ is the fundamental price.

The informed traders are aware of the price fixing by the market-maker. Hence, they

choose a trade volume small enough not to disturb the order flow from uninformed

traders. This relation is know to provide a reliable description of the impact for small

volumes but will tend to overestimate impacts for larger volumes.

The tool presented here draws from the same underlying idea of volume dependent

price change; however, it imposes a more general specification that holds for a larger

volume domain. There is abundant empirical evidence (see e.g. Bouchaud, 2010) of

a sublinear price impact dependence on the volume. Potters and Bouchaud (2003)

study the price impact as a response to the execution of a sequence of metaorders.

They find a square-root relation between the execution size and the subsequent price

change, which is presented as

Ψ(Q) = Y σd

(
Q

Vd

)δ

, (3)

where Q is the total volume of the metaorder, Y is a numerical factor of order one, σd

describs the daily volatility, Vd denotes the daily traded volume, and δ is the parameter

that describes the concave nature of the price impact, which has been found to be

δ ≈ 0.5 < 1, resulting in a square root impact function. This representation would
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provide the necessary concave shape but it requires knowledge about the sequence

of metaorders Q from individual investors. The square-root impact does not apply

to aggregated orders (see Bouchaud et al., 2018). Since metaorders are unobserved

in the analysis of this paper, the square-root impact function is not suitable. The

square root nature of the impact function implies the possibility of arbitrarily large

shocks that are able to push the price below zero. For that reason, an exponential

specification is used (see e.g. equation (4)) in line with previous work (Schnabel and

Shin, 2002; Cifuentes, Ferrucci, and Shin, 2005; Cont and Schaanning, 2017):

Ψϕ(V ) = Bϕ(1− e−V λϕ/Bϕ), (4)

where λϕ is the price impact coefficient, Bϕ the corresponding impact boundary for

a given security ϕ, and V is the daily traded volume. This allows for a price impact

smoothly converging to the boundary Bϕ. Morevoer, notice that equation (4) is

asymptotic to Kyle’s model in the limit of small traded volumes2.

2.2 Model assumptions

To motivate further the impact behaviour of trades on the price change, the following

assumptions are made:

• Conditional on one extra sell (buy) trade the price of a security, on average,

will move down (up) when everything else is kept constant;

• The price impact function is both sublinear in the traded volume and permanent

in time.

See Bouchaud (2010) for a more in-depth discussion. During any given trading day,

trades can generally occur in both buy and sell directions. The volumes corresponding
2That is Ψϕ(V ) = λV +O(V 2).
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to these trades are referred to as the buy or sell initiated volume. Let us now assume

that both the daily sell initiated volume vs and the daily buy initiated volume vb are

identically distributed vs, vb ∼ f . For symmetric price impacts, one can simply write

the daily observed price change as

R(vs, vb) = Ψ(vb)−Ψ(vs), (5)

where vi for i ∈ (b, s) are the signed traded volumes and R(·, ·) is the daily price

change in percent.

Having access to daily unsigned traded volumes only, one would, however, be able

to observe V = vs + vb. Thus, a lack of knowledge on the individual daily vs and vb

hinders the possibility to infer the functional form of the price impact Ψ. However, one

can attempt to obtain an estimate for it. Trading days, in which the trade imbalance

is large, provide the best estimate for the price impact within this framework. In

particular, it is straightforward to realise that it is when either vs ≫ vb or vs ≪ vb

that the observed impact is closest to Ψ. Therefore, an estimate for Ψ can be found

in the boundary of the set of data points in the volumes-impacts plane.

It is also worth mentioning that relaxing the assumption of symmetry is also possible,

conditional on having sufficient data. In other words, there exists a trade-off between

the assumption of symmetry and the accuracy on the estimate of Ψ.

Figure 1 provides an example from simulated data points. Assuming ex-ante the func-

tional form of Ψ allows to simulate points in the volumes-impacts plane according to

(5). The set of points can be observed to be bound by Ψ, and the null impacts can

be traced back directly to (i.e. explained by) the realisation of equal buy and sell

initiated volumes during the simulated trading day. Notice, however, that the prob-

ability of having sharp trade imbalances decreases quickly with increasing volumes.

The estimation of Ψ through the bounding curve described above is thus accurate
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only for (relatively) small volumes.

Figure 1: Price impact from simulated volumes: volumes represent sell initiated
traded volumes, while returns represent the negative impact on the price return (blue
dots), price impact curve (red line).

2.3 Incomplete trade information

Consider a double auction book where market participants place quotes for selling

and buying securities at different ask and bid price levels. Trades are realised when a

market order can either be matched to a bid or ask limit order. Crucially, it is always

one side initiating the trade.

When the information of the side of initiation is absent, some use data-driven ap-

proaches to proxy it. One early and popular approach to this problem is referred

to as the tick rule, which uses traded prices and their distance to the bid and ask

prices around the time the trade was matched. The tick rule is a simple algorithm

associating buy-initiated trades with positive changes in price ∆pt > 0, sell-initiated

trades with negative changes in price ∆pt < 0, and whichever side initiated the previ-

12



ous trade for trades whose price remains unchanged ∆pt = 0. This method has been

shown to achieve high classification accuracy (Lee and Ready, 1991) and (Aitken and

Frino, 1996). The authors provide evidence that a volatile or trending market will

decrease the accuracy of the tick rule. It is also demonstrated that the tick rule is less

likely to accurately classify seller initiated trades and small buyer initiated trades.

2.4 Intra-day estimation methods

Price impact models in this paper are motivated by theoretical research on financial

market behaviour, contagion modeling and financial stress testing.

2.4.1 Linear relation model

The simplest approach to the calibration of a security’s price impact parameter is by

estimating a linear OLS over the set of price returns and daily traded volumes. The

estimated parameter can be referred to as average impact and is denoted by λAvg.

Ψϕ(V ) = λϕV, (6)

where V are traded volumes in one direction. Closely related to the notion of a price

impact, is the market liquidity of a security. Liquidity is not directly observable,

however, it can be defined as the ease with which market participants are able to ob-

tain funding from the sell of securities or investment opportunities from the purchase

of securities (Brunnermeier and Pedersen, 2009). Conversely, the lack of liquidity,

measures the discount (buy trades), or premium (sell trades) associated with the

price of a security when a market order is executed (Glosten and Milgrom, 1985). A

widespread indicator of illiquidity is the Amihud illiquidity measure (Amihud, 2002),

capturing the average daily price response to traded amounts:
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ILL =
1

N

N∑
t=1

|Rt|
Vt

, (7)

where Rt and Vt are the daily return and volume respectively at day t and N is the

number of trading days in a year with non-zero level of trading volume.

2.4.2 Convex hull price impact

For the case of the Convex Hull3 (CH), given the aforementioned assumptions, the

price impact is estimated via the curve bounding the returns in the volumes-impacts

plane. More specifically, we approach this problem by first computing the CH on the

historical set of data points, and then fitting the desired functional form to the first

points on the CH (where the estimation is more accurate - see previous section). The

calibrated parameter by means of the CH is referred to as the hull lambda or λCH .

Figure 2 provides an illustration. The CH provides a good estimate for the price

impact function (here again chosen ex-ante), especially for small volumes. For com-

parison, the estimated linear impact is reported as well.

Figure 2: Price impacts from simulated unsigned daily volumes (arbitrary units).
The price impact curve is chosen ex-ante and is represented in red. The orange
polygon is the Convex Hull.

3The convex hull is the smallest convex polygon bounding a set of points (see Appendix for more
details).
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2.5 Quantile regression with systematic component

A pitfall of the previously described methods is that either they select the most

extreme outcomes on the volume-price plane, making them sensitive to outliers, or

a linear relationship between prices and volumes is not observed in our database of

daily price changes. Furthermore, a key missing component of these methods is the

correlation of prices. We solve this problem by including the system-level (market)

return as additional factor to explain security-level price changes defined for different

security buckets. Our approach is similar to the CoVaR methodology of Adrian and

Brunnermeier (2011)4 with the exception that we estimate the qth quantile of the

security-level price impact as a function of volumes sold and the system-level return:

R̂q
ϕ,t = β̂q

0 (1− exp(−sϕVϕ,t)) + β̂q
1Rsys,t, (8)

where sϕVϕ,t is a scaled traded volume of security ϕ at time t and Rsys,t is the sys-

tem return defined as the market cap weighted average of returns for country/sector

and country/sector/residual maturity buckets. For background information on quan-

tile regressions, see Koenker and Bassett Jr (1978), for the goodness-of-fit measure

pseudo-R2, see Koenker and Machado (1999). Volumes are scaled such that for one

single security, all historical volumes range between 0 and 1: sϕ ·maxt Vϕ,t = 1. Then,

the volume-dependent term is β̂q
0 (1− exp(−sϕVϕ,t)) in which sϕ is fixed and obtained

from the previous equation and β̂q
0 is estimated using the quantile regression. Since

we know from equation (4) that λϕ/Bϕ = sϕ, we easily derive λϕ = sϕ · β̂q
0 , which is

also reported in our result tables and figures.

This specification makes it possible to isolate the role of individual trade volumes

from market sentiment and hence correlation of prices. This setup also encompasses

equation (4) and βq
0 can also be interpreted as a bound on the price change from ini-

4See section 3.1 of the cited paper.
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tiated trade volumes. A further useful feature of this method is that we can treat the

system return as a variable from a macro-financial scenario, therefore our endogenous

price impacts are independent from the scenario and depend only on the quantile

chosen ex-ante.

2.6 Aggregation level of estimations

The level of aggregation is particularly important in price impact estimations. Our

estimations are based on security-level price changes and, thus, cannot be applied to

less granular portfolios. The most obvious reason for this is the different capitalisation

and outstanding volumes.

Assume we have two securities A and B with market capitalisation cA, cB and cor-

responding price impact functions ΨA and ΨB. The question is how to derive the

price impact function ΨA+B of the aggregate security. If an amount x is sold from the

aggregate security, we can assume that cA
cA+cB

x and cB
cA+cB

x are sold from the individ-

ual securities, respectively. This leads to individual price impacts ΨA

(
cA

cA+cB
x
)

and

ΨB

(
cB

cA+cB
x
)
. Thus, the average price impact, weighted by capitalisation, becomes

ΨA+B(x) =
cAΨA

(
cA

cA+cB
x
)
+ cBΨB

(
cB

cB+cB
x
)

cA + cB
. (9)

This function is a weighted average of exponential functions and does not reduce to

an exponential function. Hence, parameters of the aggregate price impact cannot be

derived from the individual price impacts.

An alternative solution to the above problem is the construction of artificial securities.

This means that given a price history of a number of securities {pϕi,t}i∈I , one can

16



construct an aggregate price history for an index set I as

pI,t =
∑
i∈I

cipϕi∑
i∈I ci

. (10)

Having this aggregate price history, the price impact estimation method is identical.

3 Data

The empirical analysis in this paper is focused on portfolio holdings of bonds and

equities. The security’s characteristics, including the issuer information, are obtained

from the ECB’s Centralised Securities Database (CSDB). All securities are identified

by their International Securities Identification Number (ISIN). The information col-

lected regarding the issuers are the country of residence, the institutional sector, and

the security class. The institutional sector is in line with the 1995 European system

of national and regional accounts (ESA95), for which three major groups are selected:

non-financial corporations (S.11), financial corporations (S.12), and general govern-

ment (S.13). The securities are classified based on the ESA95 instrument classes,

where the following two major groups are of interest to us: debt securities AF.3, and

Equity and investment fund shares/units AF.5. Furthermore, for bonds the residual

maturity, in the form of number of days, is included in the database.

3.1 Bond market data

Market data for bonds are obtained from the ECB internal data source Market Data

Provision (MDP). This database includes daily bid and ask quote volumes from over

900 market specialists, as provided by Bloomberg with a recording period between

2018 up to the last quarter of 2020, at a daily frequency. A problem related to the

analyses of traded bonds is that the transactions of such securities commonly take
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Number of bonds Outstanding amount
(EUR Bn)

Country (ISO code) FC GOV NFC FC GOV NFC
AT 67 17 27 39 173 17
BE 32 34 28 24 247 20
DE 486 433 66 474 1381 48
ES 139 136 19 141 907 12
FR 318 133 200 357 1533 158
IT 166 143 70 106 1616 48
NL 318 24 39 280 276 25

Total 1526 920 449 1421 6132 327

Table 1: Cardinality and outstanding amounts of bonds by country and sector
(2020Q4)

Number of Outstanding amount
equities (EUR Bn)

Market cap. FC NFC FC NFC
1b 298 488 123 198
10b 145 330 465 1379
100b 33 110 971 3514
Total 476 928 1560 5090

Table 2: Cardinality and outstanding amounts of equities by capitalization and sector

place over-the-counter (OTC), which makes it more difficult to obtain prices and

volumes. To mitigate this problem, multiple sources, reporting similar securities, are

combined to create a more complete data set with a broader coverage. In order to

ensure sufficient data quality, these different sources are combined using the highest

correlation between the reported prices and volumes. Any misreporting or larger data

gaps are reduced by optimizing the reported data from all sources.
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3.2 Equity market data

Data on equity securities are obtained from the commercial data provider Refinitiv

and the ECB Securities Holdings Statistics (SHS). The dataset from Refinitiv consists

of bid and ask prices at the end of the day, daily open and close prices, and daily

traded volumes. The data spans all trading days for the period between 2018 to 2020.

The SHS dataset provides information on security-level holdings of euro area investors.

This database includes debt securities (bonds) and equity securities.5 In addition, a

classification of SHS data by sector (SHS-S), provides information on holdings of

securities by euro area countries.

Investors and financial institutions, issuing or holding financial securities, are expected

to hold records of securities at the market value. This market value is defined as the

mid-price between the bid and ask price where the securities are quoted on markets

with a buy-sell spread (also bid-ask spread) (BIS, ECB, and IMF, 2010).

The securities that are held by financial institutions such as banks and investment

funds, have a combined observed value of EUR 19 trillion, corresponding to several

millions of securities, to which these two sectors are exposed. The distribution of

the securities, based on their observed value, follows a power law. This means that

a small number of securities cover a large portion of the total observed amount. In

order to optimise the trade-off between maximum coverage and best computational

performance, a sample of the largest 10,000 securities (by observed value) is selected,

containing an aggregated market value of EUR 5.62 trillion. This accounts for 30%

of the observed valuation covered in the SHS-S dataset.
5For a more detailed description of the data set, see the Handbook on securities statistics( BIS,

ECB, and IMF, 2010)
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4 Parameter estimation

In this section, statistical results from the quantile regressions are presented. The

results have been grouped by security type (i.e. bonds and equities) and sector

(i.e. government, financial, and non-financial corporations). In addition, bonds were

separated into three maturity buckets short-, medium-, and long-term bonds, and

the equities by market capitalisation. The importance of grouping these securities

together is to identify risk patterns in security portfolios, without the need for esti-

mations for each individual security, allowing to analyse market risk for larger, more

interconnected portfolios.

The rest of this section is structured as follows: in section 4.1, estimation results

are summarised by group and discussed in detail. Estimated parameters are further

analysed by exposing the price impact function to different levels of direct shocks.

The latter represents a potential direct market shock as a result of theoretical fire

sales. These shocks don’t show indirect effect from contagion, which will be included

in section 5.

4.1 Empirical estimation

Figure 3 provides a visual representation of the estimated quantile regressions on

empirical data for a single security. 6 In the figure, the dots represent daily traded

volume, denoted in hundred million euro, against daily returns. Each colored line is

a price impact function corresponding to an estimated quantile q from the quantile

regression, described as R̂q
ϕ,t in equation (8).

6Note that positive returns are excluded from the figure, since the focus of this paper is on the
trade pressure forcing the price down.
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The unique advantage of estimating several levels of severity by means of the quantile

regression approach, in comparison with the convex hull calibration approach in the

simulated example, can be seen when comparing figure 1 with figure 3. With the

estimated quantile approaching the median, the presence of small impacts relating to

larger volumes can be traced back directly to (i.e. explained by) the realisation of

equal volumes in both buy and sell directions during a trading day. This also explains

the non-symmetrical behaviour around the median, where a small imbalance in buy

and sell pressure can result in unpredictable returns. For further use of the calibrated

parameters this research will focus on the quantile below 0.5. Moreover, as shown in

(8), an important factor in the calibration is the inclusion of a market risk component.

The correlation with other securities in the sample has an influence on the direction

of observed returns.

Figure 3: Real data for a specific security and estimated price impact functions for
different quantiles.
Note: Positive returns have been excluded from the figure for better visualisation.
Source: Refinitiv (Eikon).

As each individual security might be exposed to different risks, it is important to

analyse results at the macro-level. At the same time, this will provide a picture of
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the robustness of our calibration. In the following subsection the statistical results

are discussed at a macro-level grouped by relevant categories. For each category the

median together with some confidence bounds are plotted for βi, for i ∈ [0, 1], and

the standard error (SE) and the pseudo R2 are provided for each estimated quantile.

The instrument-level estimation allows to get a detailed perspective of the market

impact at a micro-level. Nonetheless, such a granular perspective also permits to infer

the relevance of price impact dynamics at a macro-level. Moreover, the classification

of securities allows to identify common risk factors and potential areas of concentrated

risk.

Bond estimation

Regarding the categorisation of bonds, characteristics that are considered are the

maturity, sector, and rating.

Sector : government (GOV), financial corporations (FC), and non-financial cor-

porations (NFC);

Maturity : less than 2 years (2y), between 2 and 5 years (5y), and between 5

and 10 years (10y);

Credit rating : prime, high grade, upper medium grade, lower medium grade,

non-investment grade.

Since the price of a bond converges to the face value plus coupons over the course

of the bonds’ maturity, the price volatility tends to decrease over time. Hence, one

would expect to observe a decrease in the impact severity, in securities with a shorter

residual maturity. Empirically, this effect can be observed when comparing the esti-

mated idiosyncratic risk parameter β0 for bonds with a residual maturity less than 2

years, to bonds with a residual maturity between 5 and 10 years in figure 5 where the

latter has an impact parameter, nearly 3 times larger than the former at all quantiles.
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Figure 4: Tail impact multiplier.
Bond impact parameter β0 relative to 25th percentile β0

While the difference between sectors seems to be low when looking at the median,

the tail (i.e. q ≥ 0.05) impacts show significant differences. The severe increase in

risk when approaching the tail of the distribution is even more apparent from figure

4. The multiplication factor of the idiosyncratic impact parameter (i.e. βq≤0.25
0

βq=0.25
0

) indi-

cates the additional sensitivity in the tail compared to the sensitivity at the median.

Bond impacts in the tail can be at least 5 times larger compared to the 25th quan-

tile (see Figure 4). Interestingly, the multiplication factors appear to stabilise with

increasing residual maturity. This result is important when analysing the effects of

trading strategies or when assessing potential tail events from interconnected market

participants.

Bond security level impacts

Overall, market impacts related to bonds prove to be limited, a result that became

clear after exposing several bonds to a direct liquidation shock, see figure 6 for the

results. In this exercises, all bonds are subject to three levels of fire-sale severity

governed by the non-linear price impact function as described by equation (8) with

the security level estimated parameters above. There is no contagion mechanism at

this stage, hence impacts presented in Figure 6 can be interpreted as direct market

impact presented in percentages. Notably, the highest impacts can be observed in the

non-financial sector, this sector experiences an average shock 1.4 times higher than

shocks to the financial sector and 2.4 higher compared to the government sector. The

direct impact for short-term NFC bonds ranges from −0.5% to −0.75% when selling
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Figure 5: Bond price impact parameter estimation statistics.
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10 and 100 Mln euro, respectively. An impact that gets roughly 2.5 times larger for

long-term bonds.
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Figure 6: Bond price impacts for selected amounts sold.
The rows represent the amounts sold in Mln EUR, where the amounts are 10M, 50,
and 100 Mln EUR.
The columns represent maximum residual maturity in their respective buckets, where
2y: up to 2 years, 5y: between 2 and 5 years, and 10y between 5 and 10 years.

Moreover, the quantile regression shows that impacts estimated at the tail of the

distribution can be as much as 3 times larger than shocks around the 25th quan-

tile, commonly estimated by single point estimation models. By quick comparison of

government bonds’ impact parameters (see A.2 for more detailed overview), one can

observe that on average impact parameters in the tail are nearly 4 times more sever

than impact parameters estimated at the 25th quantile. For bonds with a residual

maturity less than 2 years, the parameter even exceeds 5 times the size.

One fundamental feature of bond securities is the credit rating. Rating agencies pro-

viding a credit score to individual securities, allow to explore the relevance of price
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impacts across different rating categories. The credit scores used for the purpose of

this work are obtained from Standard & Poor’s (S&P). The categories considered

range from Prime (least risky), to Non-investment grade (most risky); see table A9

for a more detailed overview of credit ratings. Due to data coverage issues, the anal-

ysis is confined to instruments with credit ratings higher than Lower medium grade.

Figure A1 shows that there is a significant difference between the levels of credit

rating. Based on the results, an average security with a High grade credit score,

has a 17% higher impact, than an average security with a Prime rating. while the

jump between High grade and Medium grade rating increases the impact even by

40%. The most significant jump can be observed between the Medium grade rating

and the Non-investment grade rating of nearly 240%. As usually government bonds

are higher rated than non-financial corporation bonds, the lower observed impacts

for bonds could be explained by the distribution of credit ratings within the bond

category.

These estimation results provide useful insight into the market risk associated with

bond securities. While it is clear that there exists much greater tail risk, when com-

pared to the average observed market impact, the overall market impact potential

of bonds remains low. This does, however, strongly depend on the type of bond, as

results show a significant dependency on the length of the residual maturity. Fur-

thermore, these findings provide insights for the potential security combination to

mitigate market risks, which will be investigated in more detail in section 5.

Equity estimation

Equity securities are grouped by the size of the outstanding market capital of the

issuing firm and the firm’s sector, which is either financial corporations (FC) or non-

financial corporations (NFC). Similar to results from the bond impact estimation,
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the non-financial sector has a significantly higher market sensitivity than the finan-

cial sector. This in part may be explained by the diversification of bank held assets

reflected in the bank’s equity. The estimation results for each quantile are presented

in figure 7. Note that as the firm’s market capital increases, so does the resilience

against market shocks. It can also be observed that the sectors show increasingly

similar impact sizes, among firms with a large market capitalization. As apposed to

the estimated parameters for bonds, equity can reach impact coefficients up to −0.5

for NFC equities, compared to the −0.01 for NFC bonds. The equity impact pa-

rameters in the tail can become up to 3 times larger, compared to impact parameters

around the 25th quantile for medium and large cap. securities and even up to 4.5 time

for small cap. securities, see Figure 8. These consistently large multipliers show the

potentially underestimated market risks in more common estimation methods. While

the equities present smaller multipliers than those observed for bond securities, the

much lower impact coefficients nonetheless, could lead to exceedingly larger impacts.

Equity security level impact

Similar to the bond category, the non-financial sector pose higher risks than the fi-

nancial sector equities, the differences become smaller as the size of the company

increases. The difference between the percentage impact of the two sectors can be as

much as twice as large for small cap equity, see figure 7, while the large cap equity dif-

ferences become insignificant. The size of the impact also greatly depends on the size

of the company, where small cap NFCs could experience impacts over 40%, the most

severe impact observed in large companies doesn’t exceed 12%. This suggests that

holding large cap equities is significantly less sensitive to direct market risk. How-

ever, what cannot be concluded from these figures, is the impact due to second round

effects. As the large cap securities can be considered less risky, this also could lead

to more concentrated investments, which will be discussed in more depth, in section 5.
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Figure 7: Equity price impact parameter estimation statistics.

5 Application for fire sales contagion analysis

This section demonstrates the usefulness of granular price impact functions. For this

purpose, we use a simplified version of the stress testing model of Sydow et al. (2021),

also see appendix A.1 for equations of the fire sale module. The aggregation method

of section 2.6 is used at issuer level in the analysis. According to our experience, fire

sale losses were driven mostly by investment funds, thus we introduce a constant 5%
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Figure 8: Tail impact multiplier equity
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Figure 9: Equity price impacts for selected amounts sold.

redemption from all funds, without any other shock to the system. Funds react to

this liquidity shock be selling their securities in a pro rata manner. Figure 10 reports

system-level losses in percentage of total assets of banks and investment funds. We

find that the usage of homogeneous price impact parameters over-estimates fire sale

losses up to a factor of more than two. This finding is in line with Cont and Schaanning

(2017)7.

As a sensitivity check, we run the simulations for different redemption shocks as well,

as reported in figure 11. We find a similar sub-linear behaviour of system-level losses

due to the introduced sub-linear price impact function. This leads to less than 2%

losses in terms of total assets even for an 8% redemption shock.
7See figures 14-16 in the aforementioned paper.
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Figure 10: System-level losses for different quantiles of price impact estimations,
comparison to homogeneous price impact parameters.

Overlapping portfolios among different financial institutions are a major source of

risk in times of system-wide financial distress, representing an indirect channel for

indirect contagion to spread from institutions under pressure to other market partic-

ipants investing in the same assets. This can be induced by asymmetric information

on the fundamental value of individual assets or asset categories, or by sudden liq-

uidity pressures, i.e. individual institutions might find themselves forced to liquidate

large amounts of their portfolios in relatively short windows of time. As we have

discussed this process of fire sales is associated with an impact on the price of securi-

ties subject to liquidation, eventually resulting in marked-to-market losses across the

system. Crucially, this mechanism can interest not only market participants directly

exposed to the distressed institution, but also seemingly unrelated ones, regardless

of geography, or financial health, giving rise to what is often referred to as indirect

contagion8.
8A further mechanism which contributes to indirect contagion is cross-impact. Cross-impact on

price refers to the impact on other securities and assets that might result from the liquidation of
one specific asset due to market correlations. For simplicity cross-impact is not considered in this
analysis but could be done by in a simplified manner by iterating the system-level return as in
equation (8)
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Figure 11: System-level losses for different quantiles and redemption shocks.

A common analytical tool for assessing the risk of indirect contagion is the matrix

of overlapping portfolio. Given a matrix S ∈ RNB×NS of NB institutional ISIN-

level portfolios composed of investments in NS different assets, one can write the

overlapping portfolio matrix O ∈ RNB×NB as the matrix with elements

Oij =
∑
k

min {Sik, Sjk} . (11)

Figure13a presents the overlapping portfolio matrix O for the 126 largest banking

groups in the euro area, showing wide overlapping investments worth multiple tens of

billions in the same assets. This suggests a pro-rata liquidation of a bank’s portfolio

would have far reaching implications for all banks across the system, which would

face marked-to-market losses on assets held at market value.

However, what equation (11) does not consider is the relevance of heterogeneity in

price impacts across different securities and asset classes. Much of banks’ portfolios

of securities are composed of low risk government bonds which can be exchanged
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Figure 12: Composition of euro area banks securities portfolios [Source - Security
Holding Statistics ].

for liquidity with the central bank (see figure 12). As discussed in the preceding

section, these assets are generally associated with substantially more contained price

impacts which contributes to a significant reduction of system-wide risk. A weighted

overlapping portfolio matrix can instead be constructed to capture the heterogeneities

inherent in the different assets composing the institutions’ portfolios. In particular

we define the weighted overlapping portfolio OW as the matrix with elements:

OW
ij =

∑
k

Ψk min {Sik, Sjk} . (12)

Weighted overlapping portfolios OW are presented in figure 13b. The substantial risk

reduction played by heterogeneities in price impacts can be observed at a glance,

giving more prominence to overlaps in equity holding as opposed to overlaps in safer

government bonds which compose the bulk of banks’ portfolios in the euro area.

A similar effect can also be observed by looking at the slightly related cosine similarity

matrices presented in figure 14. Specifically, we consider a nominal cosine similarity
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(b) Impact weighted overlapping portfolios

Figure 13: Weighting overlapping portfolios by security level price impacts reveals
indirect contagion poses less risk than could otherwise inferred. Here, impact in (b)
refers to quantile q = 0.05. Portfolios are those of the 126 largest euro area banking
groups reporting in SHS-G, excluding short positions for simplicity. Banking groups
on both axis are clustered by country of residence.
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Figure 14: Nominal and price impact weighted (q = 0.05) cosine similarity matrices
CS and CSW . Banks on both axis are clustered by country of residence. Here
portfolios do not account for short positions.
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matrix CS ∈ RNB×NB defined elementwise as

CSij =

∑
k SikSjk

(
∑

k S
2
ik)

1
2
(∑

k S
2
jk

) 1
2

, (13)

and a weighted cosine similarity matrix CSW ∈ RNB×NB defined elementwise as

CSW
ij =

∑
k SikSjkΨ

2
k

(
∑

k S
2
ikΨ

2
k)

1
2
(∑

k S
2
jkΨ

2
k

) 1
2

. (14)

Notice that both CS and CSW are bounded in [0, 1] when considering long positions

only, but can extend to [−1, 1] when accounting for short positions as well.

Cosine similarity gives a metric of similarity between each pair of portfolios discount-

ing the absolute amount of the overall investment in the portfolio. Therefore, CS and

CSW provide an overview of the degree of diversification in portfolios of euro area

banks. The price impact weighted matrix CSW exhibits a markedly higher degree of

diversification across the system, while at the same time revealing stronger similar-

ities for some pairs of banks than what are instead observed in the nominal cosine

similarity CS.

6 Conclusion

The aim of this paper was to analyse the effect of large scale portfolio deleveraging

on the price of market traded securities and how the corresponding shocks from

overlapping portfolios propagate through the financial system. The ability to describe

these effects allows banks and other systemically important institutions such as CCPs,

to prepare for a potential threat to the stability in the financial system. In this

paper, systemic risk is described as the combination of overlapping portfolios across

the financial system and the price impact associated with the sale of large portfolio
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fractions, which may either dampen or exacerbate indirect risk sharing depending on

the asset classes that constitute overlaps in terms of investments. Based on security

level bank exposures in combination with historical daily prices and trade volumes,

held by major participants in the euro area financial markets, we were able to quantify

potential cascade effects from large scale deleveraging.

We describe the interconnected behaviour of markets by means of a non-linear price

impact quantile regression approach. The results presented in section 4.1 show that in

general bonds prove to have much lower price impacts than equity securities, allowing

investors to mitigate market risk by optimising their portfolios. In contrast to bonds,

the results show a major risk potential for small- and medium-sized non-financial

corporation equity. Direct shocks from this category can reach up to 40%, which could

lead to major cascade events when held in high concentrations among commonly held

portfolios. The ability of large scale investment institutions to diversify portfolios is,

therefore, crucial to limit shock propagation from fire-sales.

Results presented in section 5 show that taking into account price impact heterogene-

ity across securities alleviates the risks calculated by fire sale models. We were able

to introduce an application of a price-at-risk measure, as apposed to traditional av-

erage market price impacts, to evaluate tail risk of possible market price movements

as a consequence of several shock scenarios with different severity. The results of this

analysis show that system-level losses at the tail can be up to three times higher than

average losses, ceteris paribus.
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Appendices

A.1 Contagion model of fire sales

This appendix is an excerpt of the fire sale mechanism for overlapping portfolios in

a system of banks and funds, as introduced in Sydow et al. (2021). Banks and funds

start proportionally selling tradable assets to close liquidity gaps. In this modelling

block, banks are willing to sell only their non-eligible securities since they have access

to central bank funding using their high quality liquid assets (HQLA). We assume

that there is no endogenous price impact for HQLA.9 By contrast, funds sell all kinds

of securities holdings as they do not have access to central bank funding. Thus, they

do not discriminate between eligible and non-eligible types of assets and sell all of

their securities holdings.

Let htrd
t =

{
htrd
i,ϕ,t

}
i,ϕ

denote the portfolio matrix of tradable securities at time t,

by market values, where i is the holder and ϕ is the security. Similarly, hred
t is the

portfolio matrix of redeemable holdings. Moreover, pt = (pϕ,t)ϕ denotes the vector of

prices of tradable securities.

We assume that fire sales are applied to cover liquidity shortfalls proportional to the

share of tradable securities in the securities holdings portfolio.

Then, starting from time t, the fire sale algorithm proceeds as follows:

(i) Determine the supply value Sϕ,t that will be sold of each security (at the final

prices). Based on the slicing hypothesis, the sale is done pro rata for the value

of each security in the initial portfolio, meaning that entity-level and aggregated
9An alternative approach could be the reconstruction of HQLA from granular securities within

our simulation, which would allow for a price impact on the amount of available HQLA. However,
this not only means higher computational costs but also difficulties to assess at which point a bank
would turn to the central bank to exchange specific assets for cash.
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supply of ϕ are

si,ϕ =
htrd
i,ϕ∑

φ(h
trd
i,φ + hred

i,φ )
gi and Sϕ =

∑
i

si,ϕ (15)

respectively, si,ϕ is the value that i wants to recover from ϕ. Note that the choice

of the liquidation approach, here the slicing approach, may be a crucial driver for

the magnitude of the shock transmission between sectors. For example, under

the waterfall approach (selling the most liquid assets first), the magnitude of the

shock transmission may be considerably reduced due to a reduced price impact.

(ii) Determine the new vector of prices pt+1 = (pϕ,t+1)ϕ using the total amounts

sold:

pϕ,t+1 = pϕ,t(1−Bϕ(1− exp(−Sϕλϕ/Bϕ))) (16)

and update the value of tradable portfolios

htrd
t+1 = htrd

t

(
pt+1

pt

)T

. (17)

(iii) Find the new NAV vector p∗
t+1 = (p∗i,t)i∈IF of funds, and update the value of

redeemable portfolios:

hred
t+1 = hred

t ·
(
p∗
t+1

p∗
t

)T

. (18)

(iv) Update internal accounting variables of entities to reflect changes of portfolio

values. Let i be a financial institution and ϕ a security. When we account for

the change in REA, it is the change from hi,ϕ,t to hi,ϕ,t+1 that matters. However,

when we want to account for losses only and see the impact on the total capital

we need to disentangle what is converted as cash from actual losses that stem

from the decrease in prices.

Cash holdings are updated with the amounts received after the iteration has con-
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verged:

ci,t+1 = ci,t +
∑
ϕ

si,ϕ. (19)

Note that Sϕ increases due to the price declines and the iteration terminates thanks

to the finite amount of assets that can be sold and the introduction of a lower bound-

ary for security prices. Assuming that the whole residual liquidity need is recov-

ered by i we have a change in capital due to the price impact given by mi,t+1 =∑
ϕ (hi,ϕ,t+1 − hi,ϕ,t). More generally, using the change in prices we get

mi,t+1 =
∑
ϕ

hi,ϕ,t

pϕ,t
(pϕ,t+1 − pϕ,t) . (20)

A.2 Estimated security-level price impact parameters

Average of β0 Sector and market cap.
FC NFC

Quantiles 100b 10b 1b 100b 10b 1b

0.05 -0.1495 -0.1608 -0.2315 -0.1521 -0.2163 -0.4843
0.1 -0.1083 -0.1116 -0.1410 -0.1084 -0.1513 -0.3058
0.15 -0.0825 -0.0825 -0.0966 -0.0843 -0.1151 -0.2139
0.2 -0.0644 -0.0626 -0.0696 -0.0657 -0.0887 -0.1562
0.25 -0.0505 -0.0479 -0.0500 -0.0513 -0.0683 -0.1163
0.3 -0.0399 -0.0359 -0.0357 -0.0387 -0.0512 -0.0845
0.35 -0.0302 -0.0256 -0.0241 -0.0274 -0.0361 -0.0585
0.4 -0.0209 -0.0163 -0.0147 -0.0172 -0.0222 -0.0359
0.45 -0.0116 -0.0078 -0.0059 -0.0078 -0.0091 -0.0159
0.5 -0.0025 0.0002 0.0024 0.0016 0.0027 0.0029

Table A1: Equity estimation results for β0

42



Average of λ · 109s Sector and market cap.
FC NFC

Quantiles 100b 10b 1b 100b 10b 1b

0.05 -5.455 -12.141 -147.344 -3.448 -43.020 -363.363
0.1 -3.691 -8.296 -99.568 -2.212 -27.959 -241.179
0.15 -2.624 -6.093 -68.094 -1.618 -19.841 -166.081
0.2 -1.858 -4.556 -48.751 -1.158 -15.529 -119.307
0.25 -1.395 -3.410 -33.725 -0.869 -11.986 -86.113
0.3 -1.058 -2.542 -22.730 -0.637 -8.260 -60.387
0.35 -0.797 -1.819 -15.776 -0.419 -4.962 -41.038
0.4 -0.510 -1.130 -9.999 -0.240 -2.705 -23.335
0.45 -0.252 -0.528 -4.532 -0.106 -1.021 -11.227
0.5 -0.028 -0.018 0.389 0.022 0.076 0.071

Table A2: Equity estimation results, λs, multiplied by 109

A.3 Results by credit ratings
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Average of β0 Country
Maturity / quantiles AT BE DE ES FR IT NL

2y
0.05 -0.0030 -0.0022 -0.0024 -0.0029 -0.0039 -0.0077 -0.0014
0.1 -0.0018 -0.0012 -0.0014 -0.0017 -0.0026 -0.0046 -0.0008
0.15 -0.0014 -0.0008 -0.0010 -0.0012 -0.0018 -0.0032 -0.0006
0.2 -0.0010 -0.0006 -0.0007 -0.0009 -0.0011 -0.0023 -0.0004
0.25 -0.0007 -0.0004 -0.0005 -0.0006 -0.0007 -0.0016 -0.0003
0.3 -0.0005 -0.0002 -0.0004 -0.0004 -0.0004 -0.0011 -0.0003
0.35 -0.0003 -0.0001 -0.0003 -0.0003 -0.0001 -0.0008 -0.0002
0.4 -0.0001 0.0000 -0.0002 -0.0001 0.0002 -0.0005 -0.0001
0.45 0.0001 0.0001 -0.0001 0.0000 0.0004 -0.0002 -0.0001
0.5 0.0002 0.0002 -0.0001 0.0001 0.0006 0.0001 0.0000

5y
0.05 -0.0045 -0.0061 -0.0053 -0.0093 -0.0063 -0.0201 -0.0050
0.1 -0.0031 -0.0035 -0.0033 -0.0054 -0.0041 -0.0122 -0.0036
0.15 -0.0024 -0.0024 -0.0023 -0.0038 -0.0029 -0.0087 -0.0028
0.2 -0.0018 -0.0018 -0.0017 -0.0027 -0.0022 -0.0063 -0.0023
0.25 -0.0014 -0.0014 -0.0012 -0.0020 -0.0017 -0.0046 -0.0018
0.3 -0.0010 -0.0010 -0.0009 -0.0015 -0.0012 -0.0034 -0.0014
0.35 -0.0007 -0.0007 -0.0006 -0.0010 -0.0009 -0.0023 -0.0011
0.4 -0.0005 -0.0004 -0.0004 -0.0006 -0.0005 -0.0014 -0.0008
0.45 -0.0002 -0.0001 -0.0002 -0.0002 -0.0002 -0.0007 -0.0006
0.5 0.0001 0.0002 0.0001 0.0002 0.0001 0.0001 -0.0003

10y
0.05 -0.0154 -0.0099 -0.0100 -0.0121 -0.0126 -0.0213 -0.0102
0.1 -0.0100 -0.0067 -0.0062 -0.0070 -0.0075 -0.0138 -0.0070
0.15 -0.0075 -0.0050 -0.0044 -0.0049 -0.0053 -0.0098 -0.0052
0.2 -0.0057 -0.0039 -0.0033 -0.0036 -0.0040 -0.0073 -0.0041
0.25 -0.0043 -0.0031 -0.0024 -0.0027 -0.0031 -0.0054 -0.0032
0.3 -0.0031 -0.0022 -0.0018 -0.0020 -0.0022 -0.0040 -0.0024
0.35 -0.0023 -0.0016 -0.0012 -0.0014 -0.0015 -0.0028 -0.0016
0.4 -0.0015 -0.0009 -0.0007 -0.0009 -0.0009 -0.0017 -0.0010
0.45 -0.0005 -0.0003 -0.0002 -0.0003 -0.0002 -0.0007 -0.0004
0.5 0.0005 0.0003 0.0003 0.0001 0.0003 0.0002 0.0003

Table A3: Bond estimation results for GOV, β0
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Average of λ · 109s Country
Maturity / quantiles AT BE DE ES FR IT NL

2y
0.050 -0.030 -0.026 -0.041 -0.457 -0.181 -0.399 -0.013
0.100 -0.018 -0.015 -0.024 -0.254 -0.133 -0.237 -0.008
0.150 -0.014 -0.010 -0.016 -0.167 -0.089 -0.152 -0.006
0.200 -0.010 -0.007 -0.012 -0.110 -0.051 -0.099 0.004
0.250 -0.007 -0.004 -0.009 -0.069 -0.034 -0.063 -0.003
0.300 -0.005 -0.003 -0.006 -0.039 -0.017 -0.036 -0.002
0.350 -0.003 -0.001 -0.005 -0.012 0.002 -0.022 -0.001
0.400 -0.001 0.000 -0.003 0.012 0.008 -0.012 -0.001
0.450 0.001 0.002 -0.002 0.037 0.016 -0.003 -0.000
0.500 0.002 0.003 -0.000 0.063 0.023 0.008 0.001

5y
0.050 -0.063 -0.103 -0.107 -1.256 -0.127 -0.420 -0.050
0.100 -0.044 -0.056 -0.066 -0.709 -0.081 -0.261 -0.036
0.150 -0.034 -0.037 -0.046 -0.499 -0.058 -0.185 -0.028
0.200 -0.025 -0.029 -0.034 -0.348 -0.044 -0.133 -0.023
0.250 -0.020 -0.019 -0.024 -0.237 -0.034 -0.095 -0.018
0.300 -0.014 -0.014 -0.017 -0.150 -0.024 -0.071 -0.014
0.350 -0.010 -0.009 -0.011 -0.078 -0.016 -0.047 -0.011
0.400 -0.006 -0.005 -0.006 -0.016 -0.009 -0.025 -0.008
0.450 -0.003 -0.001 -0.001 0.036 -0.002 -0.008 -0.006
0.500 0.002 0.003 0.004 0.102 0.005 0.010 -0.003

10y
0.050 -0.201 -0.134 -0.230 -2.171 -0.362 -0.811 -0.102
0.100 -0.132 -0.089 -0.142 -1.291 -0.228 -0.491 -0.070
0.150 -0.101 -0.066 -0.102 -0.875 -0.161 -0.337 -0.052
0.200 -0.079 -0.051 -0.076 -0.616 -0.119 -0.246 -0.041
0.250 -0.059 -0.040 -0.057 -0.442 -0.090 -0.181 -0.032
0.300 -0.044 -0.029 -0.041 -0.307 -0.066 -0.131 -0.024
0.350 -0.033 -0.020 -0.028 -0.198 -0.045 -0.090 -0.016
0.400 -0.022 -0.012 -0.016 -0.090 -0.026 -0.052 -0.010
0.450 -0.010 -0.003 -0.004 -0.010 -0.006 -0.017 -0.004
0.500 0.003 0.004 0.007 0.080 0.012 0.014 0.003

Table A4: Bond estimation results for GOV, λs, multiplied by 109
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Average of β0 Country
Maturity / quantiles AT BE DE ES FR IT NL

2y
0.05 -0.0032 -0.0063 -0.0043 -0.0069 -0.0055 -0.0098 -0.0052
0.1 -0.0019 -0.0037 -0.0023 -0.0033 -0.0030 -0.0049 -0.0028
0.15 -0.0013 -0.0025 -0.0015 -0.0019 -0.0019 -0.0030 -0.0018
0.2 -0.0010 -0.0018 -0.0011 -0.0012 -0.0014 -0.0020 -0.0012
0.25 -0.0007 -0.0013 -0.0008 -0.0008 -0.0010 -0.0014 -0.0009
0.3 -0.0005 -0.0010 -0.0006 -0.0005 -0.0007 -0.0010 -0.0006
0.35 -0.0004 -0.0007 -0.0004 -0.0003 -0.0004 -0.0007 -0.0004
0.4 -0.0002 -0.0005 -0.0003 -0.0001 -0.0002 -0.0004 -0.0002
0.45 -0.0001 -0.0002 -0.0001 0.0001 0.0000 -0.0003 0.0000
0.5 0.0000 0.0000 0.0000 0.0003 0.0002 -0.0001 0.0001

5y
0.05 -0.0061 -0.0097 -0.0091 -0.0129 -0.0100 -0.0154 -0.0098
0.1 -0.0036 -0.0054 -0.0052 -0.0072 -0.0058 -0.0091 -0.0055
0.15 -0.0026 -0.0034 -0.0034 -0.0048 -0.0039 -0.0061 -0.0037
0.2 -0.0019 -0.0025 -0.0025 -0.0035 -0.0029 -0.0043 -0.0026
0.25 -0.0014 -0.0018 -0.0019 -0.0026 -0.0021 -0.0032 -0.0020
0.3 -0.0011 -0.0013 -0.0014 -0.0019 -0.0016 -0.0024 -0.0014
0.35 -0.0008 -0.0009 -0.0010 -0.0013 -0.0011 -0.0017 -0.0010
0.4 -0.0005 -0.0006 -0.0006 -0.0008 -0.0007 -0.0010 -0.0007
0.45 -0.0002 -0.0002 -0.0003 -0.0004 -0.0003 -0.0006 -0.0003
0.5 0.0000 0.0001 0.0000 0.0001 0.0000 -0.0001 0.0000

10y
0.05 -0.0130 -0.0183 -0.0154 -0.0196 -0.0187 -0.0323 -0.0216
0.1 -0.0077 -0.0106 -0.0090 -0.0117 -0.0109 -0.0188 -0.0125
0.15 -0.0055 -0.0069 -0.0064 -0.0082 -0.0078 -0.0103 -0.0086
0.2 -0.0041 -0.0054 -0.0047 -0.0060 -0.0058 -0.0073 -0.0061
0.25 -0.0031 -0.0041 -0.0035 -0.0043 -0.0044 -0.0053 -0.0045
0.3 -0.0023 -0.0031 -0.0026 -0.0032 -0.0034 -0.0038 -0.0033
0.35 -0.0016 -0.0023 -0.0019 -0.0023 -0.0024 -0.0025 -0.0024
0.4 -0.0011 -0.0016 -0.0013 -0.0015 -0.0016 -0.0015 -0.0016
0.45 -0.0005 -0.0009 -0.0007 -0.0007 -0.0008 -0.0008 -0.0008
0.5 0.0000 -0.0003 0.0000 0.0000 -0.0001 -0.0002 0.0000

Table A5: Bond estimation results for FC, β0
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Average of λ · 109s Country
Maturity / quantiles AT BE DE ES FR IT NL

2y
0.050 -0.261 -0.232 -0.514 -0.421 -0.448 -3.172 -1.123
0.100 -0.140 -0.110 -0.252 -0.206 -0.210 -1.558 -0.652
0.150 -0.090 -0.073 -0.162 -0.112 -0.122 -0.882 -0.377
0.200 -0.063 -0.047 -0.107 -0.068 -0.081 -0.496 -0.242
0.250 -0.043 -0.034 -0.074 -0.044 -0.053 -0.276 -0.150
0.300 -0.031 -0.025 -0.049 -0.026 -0.028 -0.152 -0.098
0.350 -0.021 -0.017 -0.030 -0.012 -0.011 -0.070 -0.058
0.400 -0.011 -0.011 -0.016 0.002 0.004 -0.034 -0.026
0.450 -0.003 -0.005 -0.004 0.015 0.017 -0.014 0.003
0.500 0.006 0.000 0.009 0.028 0.030 0.007 0.028

5y
0.050 -0.279 -0.212 -0.868 -1.042 -0.739 -4.478 -2.934
0.100 -0.159 -0.124 -0.489 -0.552 -0.387 -2.770 -1.521
0.150 -0.107 -0.085 -0.335 -0.358 -0.244 -1.910 -0.963
0.200 -0.068 -0.061 -0.236 -0.254 -0.169 -1.176 -0.651
0.250 -0.049 -0.046 -0.175 -0.189 -0.111 -0.930 -0.457
0.300 -0.036 -0.034 -0.122 -0.134 -0.074 -0.752 -0.330
0.350 -0.025 -0.025 -0.086 -0.085 -0.049 -0.584 -0.231
0.400 -0.015 -0.017 -0.051 -0.049 -0.031 -0.270 -0.145
0.450 -0.004 -0.008 -0.018 -0.013 -0.013 -0.132 -0.065
0.500 0.005 -0.000 0.009 0.019 0.004 0.006 0.007

10y
0.050 -0.542 -0.359 -3.122 -1.478 -1.254 -2.841 -4.917
0.100 -0.293 -0.206 -2.088 -0.864 -0.613 -1.640 -2.501
0.150 -0.204 -0.133 -1.561 -0.612 -0.388 -1.124 -1.646
0.200 -0.144 -0.102 -1.206 -0.462 -0.275 -0.700 -1.140
0.250 -0.110 -0.075 -0.949 -0.332 -0.207 -0.505 -0.818
0.300 -0.081 -0.057 -0.736 -0.247 -0.154 -0.374 -0.587
0.350 -0.058 -0.043 -0.542 -0.181 -0.106 -0.267 -0.399
0.400 -0.039 -0.025 -0.360 -0.110 -0.068 -0.173 -0.247
0.450 -0.020 -0.013 -0.189 -0.046 -0.030 -0.092 -0.102
0.500 -0.003 0.003 0.004 0.009 0.003 -0.012 0.035

Table A6: Bond estimation results for FC, λs, multiplied by 109
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Average of β0 Country
Maturity / quantiles AT BE DE ES FR IT NL

2y
0.05 -0.0026 -0.0034 -0.0063 -0.0104 -0.0108 -0.0116 -0.0037
0.1 -0.0016 -0.0022 -0.0032 -0.0047 -0.0044 -0.0059 -0.0024
0.15 -0.0011 -0.0016 -0.0020 -0.0028 -0.0025 -0.0038 -0.0016
0.2 -0.0008 -0.0012 -0.0014 -0.0018 -0.0017 -0.0026 -0.0011
0.25 -0.0006 -0.0009 -0.0011 -0.0014 -0.0012 -0.0018 -0.0007
0.3 -0.0004 -0.0007 -0.0008 -0.0010 -0.0008 -0.0012 -0.0005
0.35 -0.0003 -0.0006 -0.0006 -0.0007 -0.0005 -0.0008 -0.0003
0.4 -0.0001 -0.0005 -0.0003 -0.0005 -0.0003 -0.0005 -0.0002
0.45 0.0000 -0.0003 -0.0001 -0.0003 0.0000 -0.0002 -0.0001
0.5 0.0001 -0.0002 0.0000 -0.0001 0.0002 0.0000 0.0000

5y
0.05 -0.0126 -0.0057 -0.0074 -0.0220 -0.0077 -0.0207 -0.0063
0.1 -0.0079 -0.0034 -0.0042 -0.0118 -0.0042 -0.0110 -0.0034
0.15 -0.0057 -0.0024 -0.0029 -0.0076 -0.0026 -0.0072 -0.0020
0.2 -0.0040 -0.0017 -0.0020 -0.0057 -0.0019 -0.0050 -0.0014
0.25 -0.0029 -0.0012 -0.0015 -0.0042 -0.0014 -0.0036 -0.0010
0.3 -0.0022 -0.0009 -0.0011 -0.0029 -0.0010 -0.0025 -0.0007
0.35 -0.0015 -0.0006 -0.0007 -0.0019 -0.0007 -0.0017 -0.0005
0.4 -0.0010 -0.0004 -0.0004 -0.0011 -0.0004 -0.0010 -0.0003
0.45 -0.0006 -0.0002 -0.0002 -0.0003 -0.0002 -0.0003 -0.0002
0.5 -0.0002 0.0000 0.0000 0.0004 0.0000 0.0003 0.0000

10y
0.05 -0.0291 -0.0075 -0.0102 -0.0299 -0.0154 -0.0327 -0.0096
0.1 -0.0168 -0.0043 -0.0061 -0.0180 -0.0084 -0.0175 -0.0054
0.15 -0.0117 -0.0030 -0.0043 -0.0135 -0.0058 -0.0119 -0.0036
0.2 -0.0091 -0.0022 -0.0031 -0.0087 -0.0042 -0.0088 -0.0026
0.25 -0.0066 -0.0016 -0.0023 -0.0069 -0.0031 -0.0064 -0.0020
0.3 -0.0050 -0.0012 -0.0018 -0.0056 -0.0023 -0.0047 -0.0014
0.35 -0.0037 -0.0009 -0.0013 -0.0035 -0.0016 -0.0033 -0.0010
0.4 -0.0024 -0.0006 -0.0009 -0.0027 -0.0010 -0.0022 -0.0007
0.45 -0.0012 -0.0003 -0.0005 -0.0015 -0.0004 -0.0011 -0.0003
0.5 -0.0003 0.0000 -0.0001 -0.0007 0.0001 -0.0001 0.0000

Table A7: Bond estimation results for NFC, β0
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Average of λ · 109s Country
Maturity / quantiles AT BE DE ES FR IT NL

2y
0.05 -1.087 -3.378 -3.858 -0.435 -2.414 -5.599 -3.691
0.1 -0.637 -2.234 -2.064 -0.161 -1.086 -2.662 -2.397
0.15 -0.438 -1.551 -1.291 -0.066 -0.650 -1.644 -1.592
0.2 -0.317 -1.223 -0.914 -0.024 -0.447 -1.105 -1.119
0.25 -0.232 -0.924 -0.689 -0.016 -0.315 -0.817 -0.713
0.3 -0.171 -0.740 -0.515 -0.011 -0.223 -0.572 -0.480
0.35 -0.121 -0.593 -0.367 -0.007 -0.138 -0.375 -0.321
0.4 -0.078 -0.464 -0.227 -0.004 -0.074 -0.258 -0.215
0.45 -0.029 -0.327 -0.127 -0.002 -0.013 -0.133 -0.107
0.5 0.006 -0.235 -0.034 -0.001 0.039 -0.040 -0.010

5y
0.05 -2.597 -5.673 -5.929 -9.162 -4.453 -6.652 -6.258
0.1 -1.443 -3.400 -3.178 -3.797 -2.452 -3.627 -3.393
0.15 -1.034 -2.394 -2.075 -1.934 -1.533 -2.523 -2.040
0.2 -0.767 -1.742 -1.465 -1.483 -1.078 -1.790 -1.426
0.25 -0.569 -1.247 -1.087 -1.042 -0.764 -1.302 -1.035
0.3 -0.415 -0.899 -0.785 -0.692 -0.526 -0.934 -0.745
0.35 -0.272 -0.647 -0.549 -0.480 -0.356 -0.631 -0.529
0.4 -0.167 -0.406 -0.346 -0.318 -0.214 -0.374 -0.342
0.45 -0.078 -0.204 -0.172 -0.243 -0.074 -0.151 -0.162
0.5 0.001 -0.013 -0.014 -0.168 0.063 0.050 -0.002

10y
0.050 -2.770 -8.007 -4.344 -8.744 -6.576 -14.026 -7.429
0.100 -1.517 -4.394 -2.502 -3.884 -3.419 -6.607 -4.303
0.150 -1.173 -2.932 -1.846 -2.510 -2.220 -4.464 -2.926
0.200 -0.886 -2.101 -1.246 -1.614 -1.575 -3.217 -2.125
0.250 -0.640 -1.563 -0.921 -1.190 -1.161 -2.341 -1.595
0.300 -0.446 -1.133 -0.687 -0.750 -0.862 -1.711 -1.169
0.350 -0.322 -0.817 -0.535 -0.479 -0.582 -1.231 -0.831
0.400 -0.193 -0.537 -0.347 -0.314 -0.363 -0.812 -0.538
0.450 -0.077 -0.263 -0.201 -0.129 -0.155 -0.388 -0.256
0.500 0.018 -0.003 -0.039 0.086 0.032 -0.048 0.025

Table A8: Bond estimation results for NFC, λs, multiplied by 109
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Credit rating Investment grade

AAA Prime

AA+
High gradeAA

AA-

A+
Upper medium gradeA

A-

BBB+
Lower medium gradeBBB

BBB-

BB+

Non-investment grade (junk)

BB
BB-
B+
B
BB-
B+
B
B-
CCC+
CCC
CCC-
CC
C
D
Source: Standard & Poor’s

Table A9: Standard & Poor’s bond credit rating
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Credit grade Maturity Number of
bonds

Outstanding
amount
(EUR Bln)

Prime
2y 320 551
5y 451 697

10y 358 590

Higher grade
2y 181 522
5y 222 684

10y 170 699

Upper medium grade
2y 154 149
5y 192 188

10y 152 180

Lower medium grade
2y 144 597
5y 241 809

10y 198 807

Non-investment grade
2y 8 7
5y 25 25

10y 20 26
Total 2,836 6,529

Table A10: Bond sample size by credit grade and maturity (2020Q4)
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Figure A1: Bond price impacts for selected amounts sold by credit rating.
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