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Abstract 

The recent evolution of prudential regulation establishes a new requirement for banks and supervisors 

to perform reverse stress test exercises in their risk assessment processes, aimed at detecting default 

or near-default scenarios. We present a reverse stress test methodology based on a stochastic 

simulation optimization system. This methodology enables users to derive the critical combination of 

risk factors that, by triggering a preset key capital indicator threshold, causes the bank’s default, thus 

detecting the set of assumptions that defines the reverse stress test scenario. This article provides a 

theoretical presentation of the approach and, for illustrative purposes, offers an example of application 

of the proposed methodology to the Italian banking sector. In the paper we also show how to take into 

account some relevant risk factor interactions and second round effects, such as liquidity-solvency 

interlinkage and modelling of Pillar 2 risks including interest rate risk, sovereign risk and reputational 

risk. The reverse stress test technique presented is a practical and manageable risk assessment 

approach, suitable for both micro and macro prudential analysis.  
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1. Introduction 

The recent evolution in prudential regulation has introduced further prescriptions regarding how 

institution-wide stress testing exercises should be carried out for ICAAP/ILAAP and recovery plan purposes
1

. 

These increasingly stringent requirements present risk managers in financial institutions and supervisors with 

new relevant issues on both the methodological and operational sides. Specifically, bank stress tests should:  

• Consider many adverse scenarios rather than just one, in order to assess the effects of different 

combination of risk factors and degrees of severity, also covering losses related to rare but plausible 

events and addressing the vulnerabilities of the bank. 

• Adopt a high degree of severity, in order to limit the risk of generating a false sense of security after 

passing a too-lenient stress test exercise. 

• Consider the impact of risks that are difficult to quantify (e.g. reputational and strategic risks). 

• Be able to effectively capture the effects of phenomena related to tail events in the medium-long term, 

such as non-linearity, second round and feedback effects, and interaction among risk factors in 

particular in relation to the solvency-liquidity interlinkage. 

• Perform no less than annual reverse stress test analysis
2

, also assessing the probability that the events 

and risk factors assumed in the reverse stress test may occur
3

; in this regard the EBA has also introduced 

the concept of «plausibility of scenario»
4

.  

The aim of the reverse stress test is to contribute to understanding the bank’s vulnerabilities and the degree 

of sustainability of its business model, identifying the conditions of default or near default and the associated 

critical level of risk drivers. The output of this kind of stress test is the detection of the reverse stress test 

scenario, which also represents the starting point of the recovery plan scenario.  

Its usefulness lies in the fact that by comparing the reverse stress test scenario with the bank’s stress test 

exercise, it is possible to challenge the assumptions and the degree of severity of the latter, as well as to assess 

the plausibility that the event of default or near-default associated with the reverse stress test scenario may 

occur. But assessing the probability of occurrence of the reverse stress test scenario is very different from 

assessing the default probability of the bank and its overall level of resiliency. In fact, the former is the 

probability that a specific set of assumptions that cause the bank’s default may occur, whereas the latter is the 

probability associated with the entire set of scenarios in which the bank may default, therefore covering a much 

larger set of assumptions and adverse events. In other words, there are many ways in which a bank may default 

and therefore many default scenarios. To obtain a general and univocal measure of the bank’s overall risk we 

have to consider all the potential scenarios in which the event of default (or of regulatory breach) may occur 

(and not just one, i.e. the reverse scenario); and therefore, to assess the bank’s probability of default (or the 

probability of regulatory breach).  

In a previous research work, we described how to assess a bank’s financial fragility through a stochastic 

simulation model, by determining the frequency with which a bank may breach a regulatory capital 

requirement threshold (e.g. CET1 ratio) in the future
5

. That kind of exercise (i.e. assessing the probability of 

breach) is somewhat simpler than detecting the reverse stress test scenario, because we do not necessarily have 

to discover which particular adverse event combination determines a regulatory breach. We can estimate and 

quantify the degree of fragility of a bank even without identifying the exact adverse event and risk factor 

 
1 See: BCBS (2018), ECB (2018a), ECB (2018b), EBA (2018a), EBA (2018b). 
2 Section 4.6.5 of EBA guidelines on stress testing; EBA (2018b).  
3 EBA guidelines on stress testing (EBA 2018b) in relation to reverse stress tests specify that: “institutions should:… c) assess (depending on the 

institution’s size as well as the nature, scale, complexity and riskiness of its business activities) the likelihood of events included in the scenarios leading 

to the pre-defined outcome”.  
4 EBA guidelines (see EBA 2018b) state: “Plausibility of scenario means the degree to which a scenario can be regarded as likely to materialise 

in respect of the consistency of the relationship of that scenario with the current macroeconomic and financial variables, the support of the scenario by 

a coherent narrative and the backing of the scenario by probability distribution and historical experiences. Plausibility is not restricted to historical 
experiences, and hence expert judgements that take into account changing risk environments (e.g. observed structural breaks) and stress events that 

were observed in similar risk environments outside the institution’s own direct historical experience should play a key role. It is also possible to use 

simulative methods (e.g. Monte Carlo simulations)”. 
5 See Montesi and Papiro (2013, 2014, 2018).  
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magnitude that causes the default
6

. Detecting the exact level and combination of risk factors that lead to a 

default (breach) point is a much more complex task. Since the number of scenarios and risk factor combinations 

that may trigger a bank’s default threshold can be (theoretically and in the real world) very high, there is not 

just one reverse scenario, but many; this raises the thorny question of how to select one reverse stress test 

scenario from among all those that may cause a bank’s default.  

Therefore, in addition to the need to model functional relations between risky variables and solvency 

indicators in adverse conditions, as in traditional deterministic stress test or even in more advanced stochastic 

stress test, reverse stress testing also involves a procedure or criteria for determining a specific set of conditions 

of risk drivers (e.g. GDP drop, interest rates shift, stock market crash, etc.) that defines a particular default 

scenario: the reverse stress test scenario. Despite the regulatory demand for this kind of stress test exercise, 

there are still very few papers on the topic, so more dedicated research work is called for.  

In this article we present a reverse stress test methodology based on an optimization system applied within 

a stochastic simulation framework for stress testing. The model provides a quantitative procedure that allows 

us to derive the combination of risk factors that, by triggering a key indicator threshold (CET1 ratio), causes, 

with a desired degree of approximation, the bank’s default and thus defines the reverse stress test scenario. 

Furthermore, the reverse stress test process provides a useful set of results that aids in understanding the bank’s 

vulnerabilities and sources of risk. 

Since the correct identification of the reverse scenario necessarily requires consideration of the interaction 

among all the relevant bank’s risk sources, in addition to taking into account the traditional Pillar 1 risk factors 

(credit, market and operational risks), the methodological framework also shows a possible modelling of some 

relevant Pillar 2 risks and their feedback and second round effects, in particular taking into account some of 

main features of the liquidity-solvency interlinkage. Therefore, we considered interest rate risk and 

reputational risk, and placed a particular focus on the modelling of sovereign risk. Although all models 

presented are kept at a very simple and essential level, in our opinion they capture the core elements at stake, 

thus providing some indications regarding a potentially viable approach for modelling risk factors typically 

considered as hard to quantify, such as reputational risk.  

The proposed methodology can be applied by bank risk managers and supervisors in all risk assessment 

processes that require a reverse stress test: RAF, ICAAP, Recovery & Resolution Plan, SREP.  

The paper is organized as follows. In the next section we set some preliminary aspects that help us to better 

address which are the main issues about reverse stress testing. Then we provide a very brief overview of the 

stochastic modelling framework for reverse stress testing; the following section describes the optimization 

system applied to derive a solution to the identification of the reverse scenario. We then present the 

assumptions and modelling of a case study based on the Italian banking sector intended to offer a practical 

example of how the methodology works, subsequently followed by a section that reports the main result of the 

exercise performed. The last section provides some concluding considerations; the appendices report further 

details of the assumptions and data used for the case study. 

 

 

2. Definition and Logic of Reverse Stress Testing Analysis 

Before describing the proposed methodology, it is opportune to briefly deal with some preliminary issues 

that help us to better define the sphere and complexity of this topic. From a technical point of view, reverse 

stress test analysis is aimed at finding a solution to an inverse problem, i.e. detecting those scenarios on the 

edge between the condition of viability and default, or in other words, the exact conditions in a small set of 

risk drivers that trigger the bank’s default, which from a regulatory point of view can be identified by the 

breaking of a minimum regulatory threshold, such as Total SREP Capital Requirement (TSCR) or considering 

higher thresholds such as Over Capital Requirement (OCR)
7

.  

 
6 As Taleb noted: “It is far easier to figure out if something is fragile than to predict the occurrence of an event that may harm it. [...] Sensitivity 

to harm from volatility is tractable, more so than forecasting the event that would cause the harm”. Taleb (2012, pp. 4–5). For example within the 

stochastic simulation framework of our model (Montesi and Papiro, 2018), once we have selected the bank’s risk factors variables (credit risk, market 
risk, operational risk…, etc.) and set for each variable a probability distribution function, through a Monte Carlo simulation process we are able to 

estimate the probability of breach disregarding which particular scenarios (set of risk factors combination) will determine that event.  
7 Extending the analysis to multiple capital requirements (CET1, Tier 1, total capital, leverage ratio) and further indicators respect to capital, such 

as liquidity, does not change the nature of the issue. 
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The solution to this problem can only be simple if we think in terms of an extremely reduced and simplified 

modelling framework, for example based on a synthesis profitability indicator such as ROE or ROA. If we 

assume we can represent a bank’s business model only through a set of four fundamental variables, such as 

business growth (financial assets), risk absorption (RWA), profitability (ROE) and a capital regulatory 

constraint (CET1 ratio), we can obtain a solution in a closed formula that allows us to detect the critical level 

of profitability/loss that triggers the default by causing the bank’s breaching of the regulatory capital constraint. 

The following formula describes the reverse stress test breaking point, i.e. the level of ROE that causes a CET1 

ratio below the pre-set regulatory threshold
8

: 

(1) 𝑅𝑂𝐸̅̅ ̅̅ ̅̅
𝑡 =

(1 − 𝛼𝑡−1)

(1 − 𝛼𝑡)
∙

(1 + 𝑔) ∙ 𝑅𝑊𝑡 ∙ 𝐶𝐸𝑇1̅̅ ̅̅ ̅̅ ̅
𝑡

𝑅𝑊𝑡−1 ∙ 𝐶𝐸𝑇1𝑡−1
− 1 

where 𝑔 is the rate of growth of financial assets, 𝑅𝑊 is the average risk weight of assets (𝑅𝑊/𝑇𝐴), 𝛼 is the 

capital regulatory adjustments (𝐶𝐸𝑇1𝐴𝑑𝑗) expressed as a percentage share of the Equity Book Value, 𝐶𝐸𝑇1̅̅ ̅̅ ̅̅ ̅ 

is the regulatory minimum threshold of the common equity capital ratio that sets the default condition.  

We can also express the breaking point of (1) in terms of ROA, through the well-known relationship 

between ROE and ROA, as
9

: 

(2) 𝑅𝑂𝐴̅̅ ̅̅ ̅̅
𝑡 =

(1 + 𝑔𝑡) ∙ 𝑅𝑊𝑡 ∙ 𝐶𝐸𝑇1̅̅ ̅̅ ̅̅ ̅
𝑡

(1 − 𝛼𝑡)
−

𝑅𝑊𝑡−1 ∙ 𝐶𝐸𝑇1𝑡−1

(1 − 𝛼𝑡−1)
 

This kind of simple basic modelling, in which all the complexity of the interactions between the bank’s 

risk factors and accounting/regulatory variables are removed by collapsing everything into a single explicatory 

variable (ROE or ROA), allows us to highlight the quantitative relations between profitability, capital assets 

growth and risk; a high level of breaking point losses indicating a low risk of breaching the regulatory capital, 

while a low level of breaking point losses implying a high risk of breaching. But it tells us nothing more than 

that. If we intend to minimally analyze and understand the risk factors and the context that can cause the bank’s 

default – which is, after all, the aim of reverse stress testing – we need to introduce several risk drivers into 

the model. Abandoning the too-simplistic context and introducing more explanatory variables into the 

 
8 The following steps describe the derivation of (1). By expressing regulatory capital absorption in terms of total assets (TA), we can define the 

regulatory capital constraint in terms of the Equity Book Value (𝐸𝐵𝑉̅̅ ̅̅ ̅̅ ) as: 

(a) 𝐸𝐵𝑉̅̅ ̅̅ ̅̅ = 𝑇𝐴 ∙ 𝑅𝑊 ∙ 𝐶𝐸𝑇1̅̅ ̅̅ ̅̅ ̅ +  𝐶𝐸𝑇1𝐴𝑑𝑗 

where 𝐶𝐸𝑇1𝐴𝑑𝑗 represents all the regulatory capital adjustments (such as intangibles, prudentail filters, capital deductions, etc.); a positive sign of 

𝐶𝐸𝑇1𝐴𝑑𝑗𝑡   meaning a net capital deduction (the reverse in case of negative sign). By expressing 𝐶𝐸𝑇1𝐴𝑑𝑗 as a share 𝛼 of EBV, we have: 

(b) 𝐶𝐸𝑇1𝐴𝑑𝑗 = 𝛼 ∙ 𝐸𝐵𝑉̅̅ ̅̅ ̅̅  

Thence (a) can be expressed as: 

(c) 𝐸𝐵𝑉̅̅ ̅̅ ̅̅ =
𝑅𝑊 ∙ 𝑇𝐴 ∙ 𝐶𝐸𝑇1̅̅ ̅̅ ̅̅ ̅

1 − 𝛼
 

In the absence of extraordinary capital transaction, keeping a capital target profile in line with regulatory constraint can be done by adjusting the 

dividend/capital retention policy in so as to satisfy the following condition: 

(d) 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡 ∙ (1 − 𝛿𝑡) = ∆𝐸𝐵𝑉̅̅ ̅̅ ̅̅
𝑡 

where: 𝛿 represents the payout ratio, ∆𝐸𝐵𝑉̅̅ ̅̅ ̅̅
𝑡 is the change in equity book value required to maintain the capital position in line with the regulatory 

constraint. By developing some simple passages, we can express (d) as: 

(e) 𝑅𝑂𝐸𝑡 ∙
𝑇𝐴𝑡−1 ∙ 𝑅𝑊𝑡−1 ∙ 𝐶𝐸𝑇1𝑡−1

(1 − 𝛼𝑡−1)
∙ (1 − 𝛿𝑡) =

𝑇𝐴𝑡−1 ∙ (1 + 𝑔) ∙ 𝑅𝑊𝑡 ∙ 𝐶𝐸𝑇1̅̅ ̅̅ ̅̅ ̅
𝑡

(1 − 𝛼𝑡)
−

𝑇𝐴𝑡−1 ∙ 𝑅𝑊𝑡−1 ∙ 𝐶𝐸𝑇1𝑡−1

(1 − 𝛼𝑡−1)
 

where 𝑅𝑂𝐸𝑡 = 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡 𝐸𝐵𝑉𝑡−1⁄ . The left side of the expression represents the share of net income retained by the bank, while the right side 

represents the capital needed to respect the regulatory constraint as a function of the growth of assets, the regulatory capital threshold, the risk weight 

and the capital adjustments. By simplifying (e) and placing 𝛿𝑡 = 0 we can derive (1).  
9 We can express the breaking point condition in terms of ROA by considering the well-known relation that links ROE to ROA through the 

leverage (ℓ): 

(a) 𝑅𝑂𝐸 = ℓ ∙ 𝑅𝑂𝐴 

In fact, considering that the leverage is the ratio between Total Assets (TA) and EBV, we can also express it as (see previous footnote): 

(b) ℓ =
𝑇𝐴

𝐸𝐵𝑉
=

(1 − 𝛼)

𝑅𝑊 ∙ 𝐶𝐸𝑇1̅̅ ̅̅ ̅̅ ̅
 

That is the leverage implied in the breaking point condition. Considering (a) and (b) we then have: 

(c) 𝑅𝑂𝐸 =
(1 − 𝛼)

𝑅𝑊 ∙ 𝐶𝐸𝑇1̅̅ ̅̅ ̅̅ ̅
∙ 𝑅𝑂𝐴 

By substituting (c) in (1) we can easily obtain (2). 
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modelling framework makes finding a solution to the reverse stress test problem a much more difficult and 

challenging task.  

In fact, the greater the number of risk drivers we consider, the greater the number of possible solutions 

(and not just one, as in the simple example above), since there can be numerous possible combinations of risk 

factor assumptions that can determine a breaking point. Moreover, the more articulated our model is, the more 

computationally complex finding the solutions becomes.  

As a general rule, limiting the number of risk factors to the most relevant ones and containing the level of 

analyticity of the model helps to reduce the complexity of the reverse stress test solution. In order to make the 

reverse problem computationally tractable and its solution meaningful and adequate for its purpose, we must 

necessarily make some choices regarding the limitation, selection and modelling of the risk drivers considered, 

acknowledging that these choices are unavoidably subjective and will affect the solutions. For instance, 

assuming in the model that credit risk is dependent from GDP (or only from it), for example through a satellite 

model that links GDP rate of growth to PDs and LGDs, already pre-set a certain path of solutions in terms of 

scenario conditions while exclude others. This wide spread assumption, also adopted in supervisory stress test, 

is much less obvious than what it may seem at first glance
10

, considering that quite often (like in the 2007 crisis) 

the original source of risk stems from the instability of the financial sector, while the downturn of the real 

economy arises only afterwards as a consequence of a financial crisis
11

. In this regard Hyman Minsky’s 

theoretical contributions are quite enlightening
12

.  

Even once we have determined a quantitative technique for solving the reverse stress test, given the fact 

that this problem (except in the simplistic world outlined above) always involves multiple solutions, we must 

deal with the issue of how to select one reverse stress test scenario from among all the possible breaking points 

that lie on the edge of the default area.  

If we simulate all the possible future economic dynamics of the bank, we can plot on a graph all the values 

of a key synthesis risk indicator, such as CET1 ratio, associated with each forecast scenario simulated. Once 

we have set a relevant threshold, such as that established by prudential regulation and supervisors, we can 

share the points between those lying above the threshold and those falling below in the breach area. In Fig.1 

we show a graphical representation of all the CET1 ratios generated within a simulation of 5.000 different 

forecast scenarios
13

. The points below the thresholds (10% OCR and 7% TSCR), in the pink breach area, 

represent the scenarios in which there is a breach of the relevant threshold. If we group and represent all the 

points through a distribution function, we can determine the frequency of breaching the relevant threshold 

within the forecast simulation: 21.88% for OCR and 2.54% for TSCR. To the extent that the simulation 

effectively replicates the variability of all the main bank’s risk drivers and the corresponding capital ratio 

outcomes, those frequencies can be considered as an assessment of the bank’s probability of breach. Assessing 

such probability of breach corresponds to assessing the bank’s financial fragility and its overall degree of risk. 

As mentioned in the introduction, we have already described how to perform such assessment in a previous 

paper; in this article, we focus on determining the points that lay on the edge of the relevant threshold. In fact, 

taking a closer look at Fig. 1 we can see that while most of the points lie either above or below the threshold, 

some of them just lie on the bar of the threshold (light pink for OCR and dark pink for TSCR). These points 

correspond to all the scenarios in which the impact of the simulated risk factors exactly triggers the regulatory 

breach: a slightly less severe impact not causing any breach, while more severe impacts determining capital 

ratios progressively lower than the threshold. As we can see, there are many points, not just one, which lie on 

the bar. Of course, the width of the bar (and therefore the number of scenarios lying on it) changes according 

to the desired degree of accuracy of the threshold’s breach. The aim of reverse stress testing is to determine 

the forecast assumptions of the key risk factors underlying those points, which we can call reverse breaking 

points. The purpose of this paper if to present a technique to determine the reverse breaking points and then to 

suggest a criterion for selecting one breaking point among all hose determined and the corresponding set of 

risk factor forecast assumptions which define the reverse stress test scenario.  

 

 
10 On this point see Alfaro and Drehmann (2009), Borio et al. (2012a, 2012b) 
11 Moreover, consider that empirical studies show that GDP often is not the variable that mostly explain PDs and generally it also presents a 

significant temporal lag in affecting PDs that poses a relevant problem in modelling it within a forecast period that typically covers three years. In this 

regard see Bofondi et al. (2011); Fiori et al. (2009).  
12 See in particular Minsky (1982, 2008) and Kindleberger (1989) contributions on financial instability. 
13 Consider that the graphic representation shown in Fig. 1, with all of the simplifications of this case, depicts the results of a real application. 

http://www.bis.org/author/rodrigo_alfaro.htm
http://www.bis.org/author/mathias_drehmann.htm
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Fig. 1 – Reverse Breaking Points Edge & Probability of Breach 
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To do so we must apply a selection criterion, which again involves some degree of subjectivity; for 

example the most likely scenario, the one that has the minimum level of approximation from the breaking 

condition, an average of the conditions derived from all the potential solution, the scenario that is less distant 

from the current economic conditions, etc. The selection criterion is not a minor issue; in this regard an 

appropriate way to represent all the outcomes of the reverse stress test solutions, showing the distribution of 

the critical levels of the specific bank’s main risk factors and its most likely vulnerabilities, can strongly help 

us in finding an effective selection criterion.  

Therefore, reverse stress testing involves two types of problems: 1) a computational issue related to the 

technique used to derive the reverse solutions (the reverse breaking points); 2) the choice of a criterion to select 

the reverse stress test scenario from among all the solutions obtained. The first issue can be resolved through 

quantitative methods, while the latter cannot be addressed in purely quantitative terms but requires ultimately 

subjective decisional criteria. 

Research on this topic is quite scarce, and as Grundke (2011) observes: “Unfortunately, despite the 

intensity with which the necessity of reverse stress tests is discussed by bank supervisors, there is not much 

scientific literature on how to carry out a quantitative reverse stress test in practice. In general, only case studies 

for simply structured portfolios with one or two risk factors can be found”
14

. In 2019, the situation has not 

substantially changed, and studies generally consider reverse stress tests focusing on one specific risk factor 

(credit, market, etc.), while little research has been published on more general reverse stress test frameworks 

covering all the main bank risk factors
15

.  

In the next section we present a reverse stress testing model based on a stochastic optimization system as 

a quantitative means of determining all the possible breaking point solutions on the edge of the default area 

i.e. the set of risk driver assumptions related to each breaking point. We then show a possible way to determine 

a reverse stress test scenario from the set of solutions derived. The model attempts to consider all the bank’s 

most relevant risk factors and their main interactions, although their modelling has been kept at the simplest 

possible level. The aim is to supply a practicable general methodology for addressing the reverse stress testing 

issues outlined above, providing a meaningful representation of selected adverse scenarios that can help us to 

understand the combination of risk factor assumptions that may threaten the bank’s viability.  

 

 

3. Stochastic Reverse Stress Testing: Modelling and Framework 

The model framework described refers to the empirical exercise performed, which will be more 

specifically described below. This particular modelling is partially affected by the limited data set available 

for the case study; it is of course possible to conceive a more generalized and extensive version of the 

framework, better suited to managing more structured contexts for which a wider set of data is available. 

Whatever the particular modelling features adopted, the general model framework consists of two layers (see 

Fig. 2): 

• An upper layer that includes all the systemic risk factors (e.g. GDP, interest rates, stock market, etc.) 

representing the drivers on which the stochastic optimization system is based and which defines the set 

of assumptions of the reverse scenario; the small set of macro variables adopted in our exercise is just 

a basic example; the type and number of variables can of course be changed and extended to other 

variables that may be useful for the modelling of the second layer of the framework (but keep in mind 

that the higher the number of explanatory variables used in the optimization system, the higher the 

number of possible solutions to the reverse stress test will be). 

• A lower layer made up of all the mathematical relationships that define a multi-period forecast model 

that projects the bank’s income statement, balance sheet and regulatory capital figures. The forecast 

model variables simulate the impact of all systemic and idiosyncratic risk factors on the bank’s 

economics, expressed through probability distribution functions. The forecast model follows the same 

stochastic framework presented in our previous work, to which we refer
16

. A sound multi-period 

stochastic forecasting model must meet the following requirements: (1) A dividend/capital retention 

 
14 Grundke (2011), p. 74. 
15 Along that research avenue are the works of: Grundke and Pliszka (2018), McNeil and Smith (2012). 
16 Montesi, Papiro (2018).  
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policy that reflects regulatory capital constraints and stress test aims. (2) The balancing of total assets 

and total liabilities in a multi-period context, so that the financial surplus/deficit generated in each 

period is always properly matched to a corresponding (liquidity/debt) balance sheet item
17

. (3) The 

setting of rules and constraints to ensure a good level of intrinsic consistency and correctly manage 

potential conditions of non-linearity. The most important requirement of a stochastic model is that it 

must prevent the generation of inconsistent scenarios. In traditional deterministic forecasting models, 

the consistency of results can be controlled by observing the entire simulation development and set of 

outputs. However, in stochastic simulation, which is characterized by the automatic generation of a 

very large number of random scenarios, this kind of consistency check cannot be performed, and we 

must necessarily prevent inconsistencies ex-ante within the model itself, rather than correcting them 

ex-post. In practical terms, this entails introducing into the model rules, mechanisms and constraints 

that always ensure consistency even in stressed scenarios. 

The necessary link between the upper and lower layers is given by specific satellite models that translate 

the dynamic of the macro variables (systemic risk) into each of the bank’s relevant micro variables that affect 

P&L and balance sheet (PD, interest income and expenses, etc.). In our exercise we considered a limited and 

very simple set of satellite models; the models can of course be freely extended and made more sophisticated 

without changing the essence of the modelling framework and the process by which reverse solutions are 

derived. Idiosyncratic risks, on the other hand, are simulated directly within the lower layer of the framework. 

These variables are not subject to the optimization system for determining the reverse stress test scenario. For 

the purpose of this exercise we considered as idiosyncratic risks operational risk, reputational risk and a 

component of market risk; since the bank considered in the exercise represents a sort of proxy of the 

countrywide banking sector, we did not consider any idiosyncratic credit risk factor, but more idiosyncratic 

risk components could be included.  

We may also consider introducing into the framework a further modeling component, in which we can 

model the feed-back given by the bank management’s reactions to adverse events that have occurred, in order 

to bring the model closer to the real behavior of banks under stressed conditions. For instance, it does not make 

much sense to contemplate in the model that a bank keeps on granting the same amount of new loans within a 

prolonged severely adverse business cycle; or that in times of trouble it does not make any cost reduction if it 

is needed and feasible. As we have explained, the modeling of these kinds of automatisms in adverse scenarios 

is particularly relevant for stochastic simulation models in a multi-period context. The idea is to make recourse 

to appropriate control variables and logic functions, through which to model the activation of an economic 

rational reaction of the bank’s management in response to particular preset conditions, such as the incurring 

of net losses or the triggering of a capital threshold
18

. In principle, this kind of feedback mechanism should be 

limited to those variables that are, at least partially, under the direct control of management, namely costs and 

investments. Capital issues and sales of business units at unreasonable prices in adverse market conditions to 

cover capital shortfall should not be considered.  

Of course, modeling this kind of feedback function is not an easy task and unavoidably involves some 

kind of arbitrariness. Nevertheless there are some basic options that, although not exhaustive, can be generally 

adopted without presenting too many shortcomings; such as: reducing administrative costs in case of net losses 

(e.g. eliminating the personnel bonus, reducing advisory and consultancy expenses, blocking staff turnover 

and salary increase, delaying IT projects, cutting marketing expenses, etc.); risk assets deleveraging in relation 

to the capital capacity (e.g. partial renewal of matured exposures, temporary stop to new business, switching 

from greater to lesser capital absorbing exposures, sales of assets, etc.); reduction of government bond risk 

during a sovereign crisis (e.g. reducing the portfolio’s duration or size acting on a partial renewal or different 

composition of matured securities); no dividends or interest paid on additional Tier 1 capital instruments in 

case of net losses; etc. Imagining this kind of features as a feed-back component of the model, allows us to 

conceive it as a switch that can activate, deactivate or possibly even modulate management reactions, 

according to the scope of the analysis and also to quantify (by differential analysis) the magnitude of the bank’s 

reaction capacity.  

 
17 On modelling logics regarding points 1 and 2 see Montesi and Papiro (2018), pp. 7-9. 
18 The introduction of this kind of feed-back mechanism in the model can be assimilated to the concept of real options, that is often used in 

corporate finance and management theory to explain the component of value given by the level of flexibility inherent the strategic and tactical 

management of a company. For a review of real options theory in strategic management research see for example Trigeorgis and Reuer (2017). 
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In section 5 we report the assumptions and modelling features of the main risk factors adopted in the 

reverse stress test exercise, while the assumptions related to minor variables are provided in the Appendix. 

 

Fig. 2 – The Stochastic Simulation Framework for Reverse Stress Testing 

 
 

By using a multivariate stochastic forecast model, as the one just described, we can develop a stress test 

analysis aimed at assessing a bank’s capital adequacy and its financial fragility, estimating the probability of 

breaching key regulatory capital/liquidity indicators (by determining the frequency of scenarios in which there 

is a breach of a pre-set default threshold of capital ratios over the entire number of random scenarios 

simulated). But that alone does not allow us to identify a specific set of conditions that can act as a watershed 

between the viability area and the default area, given that there are many scenarios that can trigger the default, 

including those that determine points within the default area as well as scenarios that lie at its edge (i.e. the 

breaking points that constitute the solutions to the reverse stress test). Within a stochastic simulation aimed 

solely at assessing a bank’s fragility by determining its probability of breach, we may also fail to detect the 

specific source of risk. In fact, for that purpose it would suffice to estimate, for example, the distribution 

function of loan loss provisions (and all other risky variables), regardless of whether they arise from an 

idiosyncratic or systemic event. But for the purpose of determining the reverse scenario, it is also crucial to 

determine the source of risk, how that level of provisions arises and the specific value of the driver that causes 

them. In order to identify the particular sets of assumptions related to the breaking points, we must assume a 

specific modelling layer that specifies how these risk drivers relate to all the other relevant forecast variables. 

More specifically, for the purpose of reverse stress testing, from a modelling point of view, it is important: 

A. To use satellite models that link the dynamics of a few drivers (typically macroeconomic variables such 

as GDP) to the evolution of the bank’s micro variables ultimately affecting P&L, balance sheet and 

regulatory figures (e.g. provisions for loan losses, net trading income, other comprehensive income 

reserve, etc.). Satellite models help to reduce the number of explicative variables and, together with the 

creation of a forecasting model that properly connects the related input variables with each other
19

, to 

derive a consistent and synthetic set of conditions that solve the reverse stress test exercise and define 

its scenario.  

B. To appropriately consider the most relevant interactions between risk factors. Keeping in mind that the 

purpose of the reverse stress test is to determine the right triggering combination of risk factors, it is 

crucial that the model be able to take into account and measure the impact of feed-back and second 

round effects among risk factors, which in a multi-period context can generate non-linearity phenomena 

and are particularly relevant in extreme tail scenarios typically associated with reverse analysis; how 

 
19 For example, operating cost as a function of business volume, LGD as a function of PD, etc. 
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they are modelled-in affects the ranking and impact of risk factors and thus the solutions of the model. 

More specifically, we refer to the need to consider relevant Pillar 2 risks (such as interest rate, sovereign 

and reputational risks), and the modelling of dynamics such as systemic-idiosyncratic interactions and 

liquidity-solvency interlinkage
20

. 

Moreover, to resolve the stress test problem we also need to adopt a specific computational technique 

aimed at reducing the calculations and elaboration time necessary to reach a solution; that technique is 

presented in the next section 4, while the description of a selection criterion is provided in section 6 within the 

empirical part of paper, since it is more clear the meaning of this methodological part when put directly in 

relation with a specific case study. 

 

 

4. Optimization System for Reverse Stress Test 

4.1. Simulated Annealing Driven by Multi-Start Strategy: A Heuristic Solution 

Reverse stress test problem solving can be compared to a scenario optimization issue. There are several 

quantitative techniques that can be used to resolve problems of parameter optimization, such as scenario 

optimization (Monte Carlo method), simultaneous perturbation, stochastic gradient descent, random search, 

swarm optimization and genetic algorithms
21

. The choice of the specific technique to employ depends largely 

on the specific context and issues to be addressed; unfortunately, there is no optimal algorithm to be adopted 

for all conditions.  

Moreover, in the context of complex and non-linear systems, such as the multivariate and multiperiod 

forecast model outlined above, the choice of the most appropriate technique is not an easy one. In fact, these 

kinds of models are characterized by computational complexity related to the multiple dimension of the 

research domain (i.e. we have more than a variable to optimize), the existence of several non-linear relevant 

conditions that affect the results
22

 and, in particular, the presence of other stochastic variables linked to 

idiosyncratic risk (those related to the lower layer of the model). In addition, the multiperiod context of the 

exercise generates a further element of complexity due to the significant time dependence relationship among 

variables
23

. 

For the reverse stress test exercise presented in this article, the optimization system adopted is Simulated 

Annealing (SA), an iterative heuristic aimed at approximating a global optimization in a large search space. 

This heuristic is closely related to the Markow Chain Monte Carlo method (MCMC); more specifically, it is 

an evolution of the Metropolis-Hastings method
24

.  

We combine a variant of SA, similar to that proposed by Painton and Diwekar (1995), with a multi-start 

method to improve the search process. In our opinion, one of the main advantages of this technique, under 

certain conditions of configuration of the cooling schedule, lies in the fact that it enables us to reach an optimal 

solution reducing the amount of sampling necessary. The SA technique, compared to a simpler (but blind) 

random search method, allows us to better guide the search by setting a calibration of the optimization process. 

Indeed, as evidenced by Painton and Diwekar (1995), “The goal of stochastic annealing is to minimize the 

 
20 For example a sovereign debt crisis can impact the bank’s cost of funding more or less severely depending on the maturity of its liabilities 

during the forecasting period; a systemic crisis (GDP/stock market drop) affecting the bank’s capital profile can worsen its rating and thus increase its 
cost of funding; similarly, reputational events can impact the bank’s profitability, etc. 

21 For a review of this literature see for example Gendreau and Potvin (2010). 
22 Consider, for instance, the dynamics related to increase in the cost of funding arising from the bank’s rating downgrade, or potential impairment 

on the stock of government bonds in the HCT portfolio in the case of severe downgrade of the country’s rating, or the mechanism of CET1 deductions 

related to an increase of DTA above the regulatory threshold.  
23 This kind of complexity is quite common in modeling economic and financial phenomena, albeit with a wide range of differences. With specific 

regard to optimization problems Gilli and Schumann (2012) highlight that the use of classical optimization techniques is not necessarily a good solution 

in optimization problems in financial modeling. More specifically the two authors argue that in all cases in which there is a high level of computational 

complexity it is necessary to make recourse to alternative solutions: “In such cases an often observed practice is to ‘convexify’ the problem by making 

additional assumptions, simplifying the model (for instance by dropping constraints), or imposing prior knowledge (e.g., limiting the parameter domain). 

This makes it possible to employ classical optimization methods, but the results obtained are not necessarily good solutions to the original problem. An 

alternative approach, (…), is the use of optimization heuristics like Simulated Annealing or Genetic Algorithms. These methods are powerful enough 
to handle objective functions and side constraints essentially without restrictions on their functional form.” Gilli and Schumann (2012), p. 155. 

24 Proposed for the first time by Kirkpatrick et al. (1983), it was inspired by material thermodynamic; more specifically by the technique for 

controlled cooling (annealing) aimed at reducing imperfections of a material. There are several applications of the algorithm to continuous domains or 
with a multi-start technique; see in particular: Solonen (2013), Locatelli (1996), Ali and Gabere (2010). 
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expectation of the objective or cost function by balancing the trade-offs between accuracy and computational 

efficiency”
25

. 

The multi-start technique permits better coverage of the search domain and more accurate mapping of the 

points on the edge, tracking the best candidate solution at each iteration. By starting from a set of preselected 

inputs of the domain (the primary risk drivers), it allows us to move more quickly towards the breaking 

condition, detecting the scenario that presents the highest probability of lying on the edge of the default area. 

In this regard, SA with multi-start is a very flexible technique, that allows us to adjust the system to the 

particular purpose of the analysis by properly setting the range of potential values of the variables to be 

optimized and the steps of the search process. This calibration and parametrization of the reverse stress test is 

a very important aspect, since it affects the quality of the solutions obtained by means of the optimization.  

The basic idea behind the SA technique is the following: at each step, the algorithm randomly (by means 

of a stochastic sampling method) selects a set of risk driver values as a solution close to the current set, then it 

measures the quality of the solution by verifying how close the model’s output is to the optimal condition (at 

a pre-set level of accuracy), and then decides whether to stay with the current solution or to move to some 

neighbouring values, on the basis of a probabilistic assessment determined through an acceptance function. 

During the search, the process leads the system to move towards more severe stressed states and is repeated 

until the system reaches a breaking point. To adapt the SA to a stochastic simulation framework (i.e. a forecast 

model that includes further stochastic variables in addition to those to be optimized), we performed n trials for 

each step
26

, thus obtaining a plurality of results which allow us to consider a more accurate average value for 

establishing whether the point should be added to the set of breaking point solutions or whether the iterative 

process must continue, restarting from the rejected point. The probability of accepting a move decreases with 

increasing iterations, and this allows the algorithm to leave local minimum states.  

More formally SA can be described as follows. By defining as 𝑆∗ the polytope in 𝑅𝑗 (with j = number of 

risk factors×number of forecast periods) made up of the intersection of the plans outlined by the value range 

of the several risk factor drivers subject to optimization, with 𝐶𝐸𝑇1̅̅ ̅̅ ̅̅ ̅ the value of the capital ratio threshold and 

with |f(x) −  𝐶𝐸𝑇1̅̅ ̅̅ ̅̅ ̅| the distance from 𝐶𝐸𝑇1̅̅ ̅̅ ̅̅ ̅, the goal is to find the set of solution 𝑆∗ according to which: 

(3) 𝑆∗ =  {𝑥 ∈  𝑅𝑗 | 𝐦𝐢𝐧( 𝐄(|f(𝑥) −  𝐶𝐸𝑇1̅̅ ̅̅ ̅̅ ̅|) )} 

Every run of the algorithm can be described in the following way: 

• Step 0: Let x0 ∈ S be a given starting point. 

• Step 1: Sample a point 𝑦𝑘  from neighborhood. 

• Step 2: Accept the new point using:  

𝑥𝑘+1 = {
𝑦𝑘+1 𝐢𝐟 𝑝 ≤ 𝐴(𝑥𝑘 , 𝑦𝑘+1 , 𝑡𝑘)

𝑥𝑘  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where 𝐴 is the acceptance function, 𝑝 is a uniformly random number in [0,1], 𝑡𝑘  is a global time-varying 

parameter called the temperature at iteration k-th.  

• Step 3: Update 𝑆∗ with the information collected up to iteration k-th. 

• Step 4: Set 𝑡𝑘 = 𝑇(𝑡𝑘−1), where T is called the cooling schedule function. 

• Step 5: Check the stopping criterion or continue iteration. 

Once we have selected the forecast year in which to search for the breaking point solution and the goal of 

the optimization process (i.e. the capital ratio threshold), in order to apply the SA algorithm, it is necessary to 

define: the method to select the next candidate solution neighborhood; the function A of acceptance; and the 

cooling schedule T. We applied the selection method proposed by Mueller (1959), according to which we 

select a random point in a hypersphere with radius r which represents the neighborhood. 

 
25 See Painton and Diwekar (1995), p. 494. 
26 In the simulation we used 50 trials, but we noticed that even with fewer trials (10 or 20) we can obtain a good level of accuracy. 

https://www.google.com/search?client=firefox-b-d&channel=trow&q=Neighbourhood&spell=1&sa=X&ved=0ahUKEwj0s9z48KnjAhVGr6QKHaHbBbAQkeECCCwoAA
https://www.google.com/search?client=firefox-b-d&channel=trow&q=Neighbourhood&spell=1&sa=X&ved=0ahUKEwj0s9z48KnjAhVGr6QKHaHbBbAQkeECCCwoAA
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The cooling schedule function T, can be defined as: 

(4) 𝑡𝑘 = 𝑡𝑘−1 ∙ (1 −  𝛼) 

where 𝛼 is a constant smaller than the unit
27

. Empirically we noted that this function allows us to increase the 

convergence toward the solution point with an exponential decrease of the cooling schedule, thus reducing the 

sample size
28

. 

We can define the acceptance function, 𝐴, in the following way: 

(5) 𝐴 =  
𝑒−[𝑓(𝑦)−𝑓(𝑥)]

𝑡𝑘
 

where x is the current point and y the previous local optimizer point.  

The described SA algorithm is just one possible technique for finding a solution to the reverse stress test 

problem. In our opinion it is a quite efficient methodology well suited to address complex problems in which 

are involved random variables; other heuristics may also be adopted if they prove to provide better solutions 

and reduce the calculation time and errors. In any case, it is important to stress that the choices can have a 

significant impact on the quality results and unfortunately there is no general way to find the best solutions for 

all possible problems. 

 

4.2. The Reverse Break-Even Point Frontier  

In the lower layer of the model we manage the idiosyncratic risk factors, which, although relevant in 

contributing to determine the default conditions, do not take part in the optimization as drivers of the reverse 

stress test. These idiosyncratic risk factors are also managed as stochastic variables in the model and therefore 

the contribution of their impact on the bank’s capital varies in the different scenarios simulated, especially 

whereas non linearity conditions occur. The variability of the idiosyncratic risk impact causes a margin of error 

in the precise determination of the reverse break-even points arising from the optimization system. As 

mentioned above, to address the issue we run many trials for each step of the optimization process in order to 

reject those results whose average does not meet the required level of accuracy. Of course, increasing the 

number of trials while improving the reliability of the average also entails an increase in elaboration time; 

there is a natural trade-off between elaboration time and margin of error that has to be balanced. To this end, 

for the initial calibration set-up of the model, we may perform tests to assess the optimal number of trials for 

each step of the process that offer a good level of accuracy and elaboration time. In other words, keeping in 

mind that the aim of the reverse stress test should be to select the most plausible scenario in which the bank 

defaults, we should ensure that solutions with a high probability of exactly triggering the threshold should be 

considered, while solutions that, for example, require a very high level of (very unlikely) idiosyncratic risks 

losses should be excluded. 

Therefore, in order to calibrate the model, we can generate a high number of stochastic trials (e.g. 10.000) 

that allow us to detect all the values whose average has a high probability to coincide with a breaking point 

solution. By performing this procedure for all the breaking points on the default edge, we are able to appraise 

the quality of the solutions and disregard those that have an average value too distant from the preset threshold. 

This is shown in Fig. 3, in which we report the average values of a sample of 25 breaking points on the edge 

of the distressed area (relative to the breach of the 9,54% threshold in the third forecast year), determined by 

simulating 10.000 trials for each breaking point, showing that the range of deviations from the CET1 threshold 

is quite small.  

 

 
27 In the simulation we assumed 𝛼 = 0.01. 
28 For a different formulation see for example: Liang, Cheng and Lin (2014). 
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Fig. 3 – Average Error Reverse Break Even Points Simulated 

 

 

 

5. Reverse Stress Testing Exercise: The Italian Bank Case Study 

We performed a reverse stress test exercise applying the methodology described, based on an aggregated 

sample of the four largest Italian banks: Intesa Sanpaolo, Unicredit, Banco BPM and UBI Banca, representing 

in terms of total assets slightly more than 50% of the Italian banking industry. To create the banks’ sample, 

we added up all the banks’ financial statement items so as to create a sort of aggregated balance sheet which 

we called ITB (Italian Bank), and which can be considered as representing both a typical Italian bank or a 

rough proxy of the Italian banking industry.  

Since this reverse stress test exercise has been developed exclusively for illustrative purposes, the specific 

modelling and set of assumptions applied have been kept as simple as possible to facilitate understanding of 

the basic characteristics of the approach without obfuscating the description of the “big picture” with 

unnecessary complications. Therefore, the specific set of assumptions adopted for this exercise must be 

considered strictly as an example of application of the methodology proposed, and absolutely not as the only 

or best way to implement the approach. Depending on the information available and the purposes of the 

analysis, more accurate assumptions and more sophisticated modelling can be adopted. Nevertheless, in our 

opinion the results obtained, albeit based on a very simple modelling, can be considered as a sufficiently 

descriptive analysis of the Italian banking sector’s resiliency
29

.  

The exercise time horizon is 2019-2021, considering 2018 financial statement data as the starting point of 

the analysis (see Appendix 1). In order to show the results of the optimization process in isolation from other 

dynamics, in the exercise we adopted a static balance sheet assumption, according to which assets and 

liabilities that mature within the time horizon of the exercise are replaced with similar financial instruments in 

terms of type, currency, credit quality at date of maturity; no cure rate is assumed on non-performing 

exposures. Anyway, this assumption is not necessary and can be easily removed. 

Here below, we describe the modelling assumptions of the most relevant risk factors, while the complete 

set of assumptions and modelling features adopted in the reverse stress test exercise are provided in Appendix 

2. 

 

 
29 The simplified approach based on a one-bank analysis preformed through the aggregation of several banks’ financial statements, of course 

presents some limits in deriving stress testing results for macro prudential purposes. In fact, in simulating the impact of adverse scenarios for one 
aggregated bank, we implicitly apply a sort of capital compensation among the banks characterized by capital shortfall and those by excess capital, 

which in a real context could not occur (i.e. the capital buffer of one bank could not be used for covering a capital shortfall of another bank). This 

shortcoming may alter the results in all the cases in which there are relevant differences within the sample in terms of capital position and sensitivity to 
risk factors. 
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5.1.  Pillar 1 Risks 

5.1.1. Credit Risk 

This risk factor has been modelled-in through the accounting item “Net Adjustment for Impairment on 

Loans” (see Tab A2 in Appendix 1). We adopted the expected loss approach, through which yearly loan loss 

provisions are estimated as a function of three components: probability of default (PD), loss given default 

(LGD), and exposure at default (EAD). PDs are determined as a function of GDP through a very simple 

satellite model that broadly replicates the dynamics envisaged by the EBA path generators used for the EU-

wide stress test exercises. More specifically, PD values have been simulated through the following satellite 

model: 

(6) 𝑃𝐷𝑡 = 𝑃𝐷𝑡−1 ∙ 𝑒−15∙∆𝐺𝐷𝑃 

where ∆𝐺𝐷𝑃 is the rate of change of the Italian GDP. We considered a starting point of PD equal to 1.6% 

which represents the default rate of the Italian banking system in 2018
30

. Therefore, the credit stress is driven 

only by systemic risk, managed through the GDP rate of change. As explained above, the  ∆𝐺𝐷𝑃 is the risk 

driver and is handled as a stochastic variable within the optimization system aimed at detecting the reverse 

stress test scenarios.  

Considering the range of possible variation of GDP assumed in the reverse stress test simulation  

(0, -2%), in Fig. 4 we report the distribution of all the yearly PD values used for calculating Net Adjustment 

for Impairment on Loans in the three years of the analysis. Of course, the most severe PD points simulated are 

more sparse, while lower PD points are more dense. 

 

Fig. 4 – PD Simulated Sample 

 
 

The LGDs are determined as a function of PDs, according to the strong empirical relationship between the 

two variables
31

. We adopted the non-linear relationship of LGD under stress estimated by Standard & Poors 

through the following model
32

: 

(7) 𝐿𝐺𝐷(𝑢𝑛𝑑𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠) = 𝐿𝐺𝐷(ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙) + 2.1535 ∙ 𝑃𝐷 

where 𝐿𝐺𝐷(ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙) is the value of LGD at the starting point (2018), which in our exercise is assumed 

equal to the coverage ratio on the overall NPLs of the four banks in the sample, equal to 59.86%.  

 
30 See BI (2019), p. 173. 
31 See Altman, Brady, Resti and Sironi (2005) and Altman and Hotchkiss (2006), in particular pp. 326-327. 
32 See Schmieder, Puhr and Hasan (2011), p. 63. 
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For the calculation of Net Adjustment for Impairment on Loans we adopted a two-stage model, one stage 

for performing loans and the other for non-performing loans
33

. For the sake of simplicity, we consider all non-

performing loans in one single NPL category, without differentiating between past due and unlikely to pay. In 

keeping with the static balance sheet assumptions, EADs are kept constant and we assumed no cure rate on 

defaulted exposures. The defaulted credit flow in each period is determined as the product of the expected 

default rate (PD) at the end of the period times the value of performing loans at the beginning of the period: 

(8) 𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑 𝐶𝑟𝑒𝑑𝑖𝑡 𝐹𝑙𝑜𝑤 𝑡 = 𝑃𝐷𝑡 ∙ 𝐺𝑟𝑜𝑠𝑠 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝐿𝑜𝑎𝑛𝑡−1 

The NPL stock is determined as: 

(9) 𝑁𝑃𝐿𝑡 = 𝑁𝑃𝐿𝑡−1+𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑 𝐶𝑟𝑒𝑑𝑖𝑡 𝐹𝑙𝑜𝑤𝑡 

The Net Adjustment for Impairment on Loans is determined as: 

(10) 
𝑁𝑒𝑡 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝐼𝑚𝑝𝑎𝑖𝑟𝑚𝑒𝑛𝑡 𝑜𝑛 𝐿𝑜𝑎𝑛𝑠𝑡

= 𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑 𝐶𝑟𝑒𝑑𝑖𝑡 𝐹𝑙𝑜𝑤 𝑡 ∙ 𝐿𝐺𝐷𝑡+𝑁𝑃𝐿 𝑡−1 ∙ (𝐿𝐺𝐷𝑡 − 𝐿𝐺𝐷𝑡−1) 

where the first addendum represents the impairments on new defaulted loans; the second addendum represents 

the impairments on old defaulted loans due to a change in the coverage of NPLs that occurs any time that 

LGDt≠LGDt-1. The loan losses reserve at the end of the period is then given by the reserve at the beginning of 

the period, plus the Net Adjustment for Impairment on Loans: 

(11) 

𝑅𝑒𝑠𝑒𝑟𝑣𝑒 𝑓𝑜𝑟 𝐿𝑜𝑎𝑛 𝐿𝑜𝑠𝑠𝑒𝑠𝑡

= 𝑅𝑒𝑠𝑒𝑟𝑣𝑒 𝑓𝑜𝑟 𝐿𝑜𝑎𝑛 𝐿𝑜𝑠𝑠𝑒𝑠𝑡−1

+ 𝑁𝑒𝑡 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝐼𝑚𝑝𝑎𝑖𝑟𝑚𝑒𝑛𝑡 𝑜𝑛 𝐿𝑜𝑎𝑛𝑠𝑡 

5.1.2. Market Risk 

This risk factor has been modelled-in through the accounting item “Net Gains/Losses on Financial Assets” 

(see Tab A2 in Appendix 1), which includes mark-to market gains/losses, realized and unrealized gains/losses 

on securities in the Held For Trading (HFT) portfolio. The variable is expressed as a gains/loss rate on financial 

assets held for trading and is determined as a function of the Euro stock market index and its volatility through 

a simple satellite statistical regression model. The stock index and its volatility are handled like stochastic 

variables within the stochastic optimization system aimed at detecting the reverse stress test scenarios. 

The return on the HFT portfolio is determined through a statistical model assessed by means of a regression 

analysis of net trading income of the four banks compared to the EURO STOXX 50 Index (SX5E) and its 

volatility, plus a random error that represents the idiosyncratic risk factor; considering a time period that covers 

the last 13 years. The satellite model is given by the following expression: 

(12) 𝐺𝑎𝑖𝑛𝑠(𝐿𝑜𝑠𝑠𝑒𝑠) 𝐻𝐹𝑇𝑡 = 0.011301 + 0.031474 ∙ ∆𝑆𝑋5𝐸 𝑡 − 0.0284442 ∙ 𝑉𝑜𝑙𝑆𝑋5𝐸𝑡 + 𝜖𝑡 

where ∆𝑆𝑋5𝐸 is the change in the EURO STOXX 50 index, 𝑉𝑜𝑙𝑆𝑋5𝐸 is its volatility compared to the previous 

year (360d); 𝜖𝑡 represents a random error normally distributed with zero mean and standard deviation equal to 

0.003680, which coincides with the standard deviation of the residuals of the estimate. 

5.1.3. Operational Risk 

Modelled-in through the accounting item “Other Non-Operating Income/Losses” (see Tab A2 in Appendix 

1); this risk factor is modelled directly making use of the corresponding regulatory requirement records 

reported by the sample banks (considered as maximum losses due to operational risk events). Operating losses 

is handled as a stochastic variable and modelled through a Beta distribution function (shaped so as to resemble 

an exponential function), defined by the minimum equal to zero and the maximum equal to sum of the four 

banks’ 2018 operating risk capital requirement (€ 4.594 million, which coincides with the maximum loss), and 

shape parameters α = 1; β = 5. Fig. 5 depicts the probability distribution adopted. 

 

 
33 The model adopted is a reduced version of model developed in Montesi et al. (2019) to which we refer. 
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Fig. 5 – Operational Risk Probability Distribution Function 

 
 

5.2. Pillar 2 Risks 

5.2.1. Sovereign Risk 

This risk driver is modelled-in through the BTP-Bund spread and handled as a stochastic optimization 

variable. The spread increase is uniformly applied to all maturities (parallel shift assumption). The spread 

dynamic determines, through a duration-convexity model, the impact on the value of government bonds held, 

with effects to P&L and AOCI according to the accounting treatment related to the specific portfolio. This risk 

also generates relevant second round effects and interactions with other risk factors, arising from the impact 

that the sovereign rating associated with the spread level has on the bank’s rating and subsequently on its cost 

of funding on newly issued liabilities, and from the impact of the tax effects (DTA) – generated by the change 

in the value of government bonds held in the portfolio FVTOCI – on regulatory capital deductions and RWA. 

More specifically, for modelling sovereign risk we considered the 10-year BTP-Bund spread; the starting 

value is that of the end of December 2018, equal to 250 bps. 

With regard to the first-round effect of the spread related to the impact on government bonds held, we 

considered the holdings of securities in all of the sample banks’ accounting portfolios: FVTOCI - Fair Value 

To Other Comprehensive Income; FVTPL – Fair Value To Profit and Loss; HTC – Held to Collect (“Financial 

Assets at Amortised Cost”). The impact of the spread on the government bonds follows the accounting 

treatment of each portfolio; namely: 

• Impact on the FVTPL portfolio flows to P&L through the accounting item “Net Gains/Losses on 

Financial Assets/Liabilities at FVTPL”. 

• Impact on the FVTOCI portfolio flows directly to equity through the accounting item “Accumulated 

Other Comprehensive Income” (OCI Reserve), net of the tax effects which are considered as DTA 

within the regulatory capital deduction and RWA.  

• Securities held in the HTC portfolio have an impact that flows to P&L through the accounting item 

“Net Adjustment for Impairment on Loan” only if the country rating falls below BB, (two notches 

respect to the current rating BBB), assuming that it raises a significant increase in credit risk; 

impairment is made by applying the 5 years PD reported in the S&P Sovereign Cumulative Average 

Default Rates
34

 and a 40% LGD (adopting the same assumption of the EBA EU-wide stress test 2018 

for Italian sovereign risk).  

We determined the duration and convexity for each maturity bucket on the basis of benchmark securities 

of Italian government bonds, as shown in the table below; the first two short term buckets were assigned a zero 

duration and convexity. We then assigned duration and convexity to exposures in each portfolio on the basis 

of the four banks’ records of Italian bond holdings published in the EBA 2018 EU-wide Transparency 

Exercise
35

. 

 
34 See S&P (2018), p. 83. 
35 Those records referred to exposures at 30 June 2018; as updated information was unavailable, we assumed them to be the same at 31 December 

2018. 
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Tab. 1 - Sovereign Exposures, Duration & Convexity 

 
Data Source: Exposure: EBA (2018), Duration and Convexity: Bloomberg. 

 

We then determined the impact of the spread changes on the value of the government bond holdings by 

applying the following Duration-Convexity approximation to each portfolio bucket: 

(13) ∆𝐹𝑉𝑡
𝑌 ≅ − (𝐸𝑋𝑃𝑡

𝑌 ∙ 𝛥𝑖𝑡 ∙ 𝑀𝐷𝑌 + 𝐸𝑋𝑃𝑡
𝑌 ∙

𝛥𝑖𝑡
2

2
∙ 𝑀𝐶𝑌) 

where ∆𝐹𝑉𝑡
𝑌 is the fair value change in Italian government bond holdings at time t for the bucket Y; 𝐸𝑋𝑃𝑡

𝑌 is 

the exposure in Italian government bonds at time t for the bucket Y; 𝛥𝑖𝑡 is the yearly change in the sovereign 

spread; 𝑀𝐷𝑌 is the modified duration for the bucket Y; 𝑀𝐶𝑌 is the modified convexity for the bucket Y. 

In keeping with the static balance sheet assumption, the government bond holdings that mature within the 

forecast time period are assumed as reinvested for the same amount and duration but all allocated in the HTC 

portfolio, because in a context of sovereign crisis it would be rational for the bank to allocate them in a portfolio 

that would be less exposed to market turbulence; of course, these assumptions involve a lesser impact from 

the spread
36

. Reinvestment in securities yields an interest income calculated with the updated interest rates on 

government bonds associated with the specific stressed scenario. 

In relation to the second-round effect of the spread, we assumed that a sharp increase in the 10-year BTP-

Bund spread is associated with a downgrade of the rating of the country (Italy), in keeping with the relationship 

shown in Fig. 6, which associates spread values with rating classes. The theoretical relationship between the 

BTP-Bund spread and Italy’s rating has been estimated on the basis of the average percentage increase in the 

cost of funding associated with each rating class, considering a sample that covers all ratings classes of all 

issuers (financial and non-financial in the US and EU) between 1995-2018 (see Tab. 2); the spread increases 

associated to each lower ratings reported in Tab. 2 were then applied to the current spread and rating class on 

the Italian debt, in order to rescale that dynamic to the Italian sovereign risk case reported in Fig. 6.  

 

Fig. 6 – BTP-Bund Spread & Italy Rating Theoretical Relationship 

 
Data Source: Bloomberg 

 
36 In a context of a severely adverse scenario, like that in reverse stress testing, we may also adopt more rational assumptions, such as considering 

that there is no (less) reinvestment of securities matured, or reinvestment with a shorter duration. For the sake of simplicity, we adopted a strict static 
balance sheet assumption just changing the accounting portfolio.  
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Subsequently a downgrade in the sovereign rating involves a corresponding downgrade in the bank’s 

rating; this empirically evident relationship is shown in the graph below (Fig. 7) and it is based on the fact that 

rating agencies generally cap the rating of any issuer to the country rating. 

 

Fig. 7 – Italy Rating vs. Banks Rating 

 
Data Source: Bloomberg 

 

The relation that links the banks’ rating to the country rating in each forecast year is the following: 

(14) 𝐵𝑎𝑛𝑘 𝑅𝑎𝑡𝑖𝑛𝑔 =  1.1808 ∙ 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 𝑅𝑎𝑡𝑖𝑛𝑔0.9107 

This statistical relationship has been assessed considering the S&P, Moody’s and Fitch ratings for Italy 

and the average rating of the four banks in the sample within the period 1997-2019
37

. In Fig. 8 we show the 

records and estimated relationship. The available observations on the association between the country rating 

and the average rating of the four banks were used to develop a relationship for all the rating classes; for low 

rating classes (below B+) the country and bank ratings tend to match, while for high rating classes (above  

BB-) the country ratings tend to be higher than the corresponding bank ratings. 

 

Fig. 8 – Italian Bank Rating & Italy Rating Theoretical Relationship 

 
Data Source: Bloomberg 

 
37 We transformed the alphanumerical rating classes into an ordinal ranking scale, ranging from 1 (corresponding to D rating class) to 22 

(corresponding to AAA rating class).  
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The bank’s cost of funding changes according to its rating, the latter being determined as described above. 

Therefore, a downgrade will cause an increase in the interest rate paid on newly issued liabilities (according 

to the maturities of the liabilities issued existing at 2018)
38

; it does not affect the cost of deposits (which are 

instead exposed to reputational risk).  

The increase in interest rate applied to these liabilities is given by the difference between the cost of 

funding associated with a bank’s new rating and its starting rating BBB (determined as RWA weighted average 

of the ratings of the four banks considered in December 2018). The cost of funding associated with each class 

of rating is determined according to the following Tab. 2, derived as average default spread market values on 

all classes of ratings of all issuers (financial and non-financial in the US and EU) between 1995-2018. 

 

Tab. 2 - Default Spread Associated to Rating Class 

 

Data Source: Bloomberg 

 

The following picture (Fig. 9) shows a workflow that highlights the interactions between risk factors in 

the model. The impact on RWA arises because of the prudential rule that requires DTA up to a regulatory 

threshold not to be deducted from CET1 but included in RWA with a 250% risk weight.  

 

Fig. 9 – Sovereign Risk: First and Second Round Effects 

 

 

 
38 This connection links sovereign risk with interest rate risk and to some extent to liquidity risk too, because the impact is determined according 

to the maturity structure of the liabilities and therefore to the bank’s funding need.  
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A further potential interaction among risk factors could be modelled-in by expressing the bank’s rating in 

each forecasting year as a function not only of the country rating, but also of the bank’s capital profile, for 

example by setting up a simple relationship that links the shadow bank’s rating to its CET1 ratio (or any other 

more complex scoring). In this way the cost of funding (interest rate risk) would be connected not only with 

the sovereign risk but also to all other risks that affect the bank’s capital position (e.g. credit risk). In this case 

the bank’s rating would be defined as: 

(15) 𝐵𝑎𝑛𝑘 𝑅𝑎𝑡𝑖𝑛𝑔 = 𝐦𝐢𝐧[1.1808 ∙ (𝐶𝑜𝑢𝑛𝑡𝑟𝑦 𝑅𝑎𝑡𝑖𝑛𝑔0.9107); 𝑠𝑐𝑜𝑟𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑛𝑔] 

With the country rating acting as a ceiling on the shadow rating attributed to the bank credit worthiness.  

5.2.2. Reputational Risk 

We considered a modelling of this risk factor limited to the most relevant and basic impact in relation to 

the business model of our banks’ sample. In practice, we assume (see Fig. 10) that reputational events may 

cause a customer drop out (mainly from the retail segment) that involves a subsequent decrease of deposits 

(liabilities with low cost funding) to be replaced by new debt (liabilities with high cost funding) as immediately 

available source of funding; a decrease in net commissions arising from a shrinking customer base and an 

increase in expenses due to legal costs, etc. Considering the context of severely adverse conditions, we 

assumed that a reputational adverse event occurs in any case in the first forecast year, with impacts (in terms 

of decrease in deposits and net commissions; and increase in expenses) that can range between zero (in case 

of perfect remediation management of the reputational event) and a maximum level set according to 

benchmark parameters observed in the reference market
39

. The impact then lasts for the entire forecasting 

period of the analysis
40

. In this regard we assumed that the reputational event determines an increase in the cost 

of funding equal to Euribor + bank spread applied to a refinancing up to a maximum of 21% deposits runoff, 

a decrease in commissions as great as 10% and an increase in expenses up to 10%.  

 

Fig. 10 – Reputational Risk Effects 

 

 
39 We determined the benchmark impact by considering the cases related to four Italian banks hit by severe reputational crisis: Veneto Banca, 

Banca Carige, Banca MPS, Banca Banca Popolare di Vicenza. 
40 In Montesi and Papiro (2018) we proposed modelling reputational risk within the stochastic simulation framework for the purpose of assessing 

a bank’s probability of default (fragility assessment), considering both the probability that a reputational event may occur and the variability of its 

adverse impact. In that work we suggested introducing a reputational event risk stochastic variable (simulated, for example, by means of a binomial 

type of distribution) through which, for each period, the probability of occurrence of a reputational event can be established. Then, in scenarios in which 

reputational events occur, a series of stochastic variables linked to their possible economic impact – such as reduction of commission factor; reduction 
of deposits factor; increased spread on deposits factor; increase in administrative expenses factor, etc. – is in turn activated. Thus, values are generated 

that determine the entity of the economic impacts of reputational events in every scenario in which they occur. Otherwise, in the case of reverse stress 

test, in which we assume always adverse conditions, reputational risk can depend only on the magnitude of the losses and not on the probability of 
occurrence of a reputational event.  
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This risk factor has been handled by means of three specific stochastic variables related to the decrease in 

deposits, the decrease in “Net Commissions” and the increase of “Operating Expenses”, all modelled through 

a Beta function defined by the minimum and maximum values and with shape parameters: α=1; β=5. In Fig. 

11 we report the parameters of the probability distribution functions involved in the modelling of reputational 

risk.  

 

Fig. 11 – Reputational Risk Probability Distribution Function Parameters 

Deposit Hair Cut  Operating Cost Increase & Net Commissions Decrease 

  
 

5.2.3. Interest Rate Risk 

This risk factor is modelled-in by calculating the impact of interest rate changes on Net Interest Income – 

NII and considering interest rates (Euribor Swap Rate 6M) as a stochastic variable within the stochastic 

optimization system aimed at detecting the reverse stress test scenarios. 

1) The bulk of interest expenses are affected by: 

a) The changes in interest rates on the variable rate share of the pre-existent liabilities issued.  

b) The changes in interest rates on all debt due to banks (interbank short term financial debt), whose 

source of funding in stressed conditions tends to increase. 

c) The changes in interest paid on all newly issued liabilities (both fixed and variable rate issues) 

during the forecast period, which are assumed to be made at the new market conditions (reflecting 

the dynamics of both the interest rates and the bank’s default spread, which in turn depends on the 

sovereign spread). 

d) The change in interest paid on part of the deposits (we assumed that 10% of deposits are sensitive 

to Euribor changes). 

e) The increase in interest paid due to the decrease in deposits (low cost of funding) related to 

reputational events and the subsequent switch to debt due to banks (higher cost of funding).  

Of the impacts affecting interest expenses a), b) and d) are purely driven by interest rate risk, while c) is 

also driven by sovereign risk, and e) is driven by reputational risk. Of course, the fixed rate share of pre-

existing liabilities that does not expire within the forecast period is not affected by interest rate risk.  

2) The bulk of interest income is affected by:  

a) The changes in interest rates on the variable rate share of pre-existing credit exposures (assumed to 

be 40% of the total loans portfolio). 

b) The changes in interest rates on all loans to banks (interbank short-term financial exposures). 

c) The decrease in interest received due to the new flows of non-performing exposures (we assume 

that interest income is generated only on the value of exposures net of accumulated provisions). 

d) The increase in interest received on government bonds due to the re-investment of securities 

expired within the forecast period in bonds with interest rates that include the increase in the 

sovereign spread (assuming that the re-investment of government bonds is always made with new 
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securities issues that embody the current market conditions); the reinvestments are determined on 

the basis of the maturity buckets of the government bonds portfolios held by the four banks.  

Of all the impacts affecting interest income, only a) and b) are related to interest rate risk, while c) is driven 

by credit risk and d) by sovereign risk (as a matter of fact, this represents a positive mitigation side effect of 

sovereign risk and not a negative impact). Of course, the fixed rate share of pre-existing exposures is not 

affected by interest rate risk.  

The description of the interest rate risk effects highlights the interlinkage among risk factors and the second 

round effects envisaged by the model.  

 

 

6. Reverse Stress Test Results and Scenario Selection 

The stress test exercise performed has been developed exclusively as an exemplification for illustrative 

purposes and does not represent to any extent a valuation on the capital adequacy of the banks considered. 

Stress test and reverse stress test results should not be considered as the banks’ expected or most likely figures, 

but rather should be considered as potential outcomes related to the extremely severe adverse scenarios 

assumed. 

The risk assessment exercise performed includes two kinds of analysis:  

a) A stress test exercise, aimed at assessing the probability of breaching regulatory thresholds in stressed 

conditions; in this regard we considered two different thresholds: a) 9.54% corresponding to the 

aggregate OCR – Overall Capital Requirement of the four banks of the sample; b) 6.5% that 

corresponds to the aggregated TSCR – Total SREP Capital Requirement.  

b) A reverse stress test exercise, aimed at detecting a specific set of assumptions of the primary risk 

drivers that can cause the triggering of a regulatory breach in each of the three years of the forecast 

time period; also in this case we considered the two different thresholds: a) 9.54% OCR; b) 6.5% 

TSCR.  

Breaching the first threshold (OCR) is a quite usual result achieved in stress testing simulation and does 

not indicate a particularly critical risk condition, since the capital conservation buffers (CCB) are specifically 

dedicated to absorb capital losses under stressed conditions (even though hitting this threshold implies relevant 

constraints to the bank, such as the submission of a plan for restoring the capital buffer and the application of 

the Maximum Distributable Amount (MDA) rules for dividend distribution). While breaching the second 

threshold (TSCR) implies a more relevant risk condition, since it involves the infringement of viability 

conditions for the bank. 

All the reverse stress test analysis has been performed in relation to the transitional CET1 Ratio (in any 

case, the only material difference compared to the fully-phased ratio concerns the transitional effect of the 

FTA of IFRS 9 accounting principle). For sake of simplicity we did not consider and exhibit other capital 

constraints (Tier 1, Total capital and leverage ratio), anyway consider that applying a multiple constraints 

detection does not affect the methodology. 

As already mentioned, we considered the following risk factors as primary drivers of the reverse stress test 

exercise: Italian Real GDP rate of change, 10-year BTP-Bund Spread, Euribor Swap Rate 6 months, SX5E 

Index rate of change, SX5E Volatility. The Tab. 3 shows the range of possible values assumed for each risk 

driver for the reverse stress test optimization process. The first column reports the records at 31 Dec. 2018 

related to the starting point of the analysis. 

Of course, the range of variability set for each risk factor variable is crucial in determining the output, 

since the magnitude of the extreme values determines the possibility of breaking the preset threshold; therefore, 

in correctly interpreting the results of the analysis we always need to refer to the specific assumptions adopted. 

In this regard, since detecting whether or not the bank may potentially breach the threshold in a reasonable 

range of adverse scenarios is in itself a valuable piece of information, we suggest starting the analysis by first 

setting a proper and plausible level of severity in the assumptions (i.e. neither too mild nor too extreme). In 

this way we can detect whether there are adverse but plausible scenarios in which the bank breaches the 

threshold. Of course, it may be that with that level of severity, the breach may never occur, and thus the reverse 

scenario cannot be identified. In that case we must increase the severity of the assumptions beyond the 
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plausibility level and possibly leave the range of values for each variable unconstrained,
41

 so that some breaking 

points can be reached in any case. 

 

Tab. 3 – Range of Optimization Variables 

SYSTEMIC RISK FACTOR 
VALUES AT: 

31 Dec 2018 
MIN MAX 

Italian GDP rate of change 0.9% (*) -2.0% 0.0% 

10-year BTP-Bund Spread 250 BPS 450 BPS (+200 BPS) 650 BPS (+400 BPS) 

Euribor Swap Rate 6M (**) -0.237% 0.32% (+0.557%) 0.62% (+0.857%) 

SX5E Index rate of change (***) 3,001 1,800 (-40% rate of chg.) 2,701 (-10% rate of chg.) 

SX5E Volatility (***) 12.61% 25.00% (+12.39%) 45.00% (+32.39%) 

(*) Italy Real GDP, 2018 YoY% (Source: Eurostat). 
(**) The range min/max has been obtained on the basis of the adverse scenario assumptions for the swap rate in the 2018 EU-wide 

stress test exercise (see ESRB, 2018). 
(***) In setting the range of assumptions we considered that in the last 25 years the maximum yearly rate of change of the SX5E 

index has been about 45% and that the maximum level of volatility recorded has been about 37%. 

 

6.1. The Probability of Breach: A Measure to Assess the Degree of Bank Fragility 

The stress test performed is somehow preliminary (even if not strictly necessary) and complementary to 

the reverse stress test. In fact with this analysis, by exploring through a stochastic simulation the dynamics 

related to all the plausible adverse scenarios, we are able to calculate the entire distribution functions of capital 

ratios recorded in all the scenarios and in each year; and then by setting a particular capital ratio threshold, we 

can easily determine the bank’s probability of breach as the frequency of scenarios with which the bank 

breaches the preset threshold within a given time frame over the entire number of scenarios simulated (i.e. the 

points in the breach area in Fig. 1). This kind of analysis allows us to assess an effective measure of the fragility 

degree of the bank.  

Tab. 4 and 5 report the marginal and cumulated probabilities
42

 of breach related to the two different 

thresholds for each forecast year. These probabilities have been assessed through the stochastic simulation 

methodology described in our above-mentioned previous paper
43

, assuming for all the systemic risk factor 

stochastic variables a symmetric Beta distribution function with parameters (4; 4), defined by the minimum 

and maximum values reported in Tab. 3. 

The probability of breaching the TSCR threshold is null in the first two years and extremely low in the 

third year. While, as to be expected, under the severe stressed conditions assumed the cumulated probability 

of breaching the higher OCR threshold (i.e. eroding the capital conservation buffers) is extremely high in the 

third year, substantial in a two-year time period and negligible in a one-year time period.  

The results of the probability of breach stress test indicate that a reverse stress test scenario can be 

determined only in the third year (2021) for the TSCR threshold (since there are no breaches in the first two 

years), and for all the three forecast years for the OCR threshold.  

 

Tab. 4 – Probability of Breach of CET1 Ratio: TSCR 6.5% Threshold 

 2019 2020 2021 

Marginal Probability 0.000% 0.000% 0.1012% 

Cumulated Probability 0.000% 0.000% 0.1012% 
Data Elaboration: by Streeling.Simulator. 

 

Tab. 5 – Probability of Breach of CET1 Ratio: OCR 9.54% Threshold 

 2019 2020 2021 

Marginal Probability 0.069% 35.492% 61.561% 

Cumulated Probability 0.069% 35.561% 97.053% 
Data Elaboration: by Streeling.Simulator. 

 
41 Except for the case of consistency constraints set in terms of cap or floor to the range of potential values.  
42 The marginal probability, represents a conditional probability, and it indicates the frequency with which the breach event will occur in a certain 

period, but only in cases in which said event has not already occurred in previous periods. Cumulated probability, provides a measure of overall breach 

risk within a given time horizon, and is given by the sum of marginal breach probabilities. 
43 Montesi and Papiro (2018). 
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6.2. Reverse Stress Test Results 
Once we have detected if and how many times the banks may breach in a given time horizon a certain 

threshold, we can then find out by performing the reverse stress test the subset of all the particular scenarios 

which exactly trigger (within a preset approximation level
44

) the threshold (i.e. the breaking points on the edge 

of the distressed area in Fig. 1); and then, by adopting a selection criterion, derive the assumptions of the 

primary risk drivers that specify the reverse stress test scenario.  

To detect the breaking points, we applied the SA optimization system described in section 4 to those five 

systemic risk drivers. On the basis of the solutions obtained through the optimization system, in order to derive 

one set of assumptions that define the reverse stress test scenario, we need to adopt a criterion to select a 

scenario among all those related to the breaking points. As already stated, there is no univocal criterion for this 

purpose; any choice unavoidably involves some degree of subjectivity. Therefore, it is very important to adopt 

a representative schema of the risk factor solutions determined that can help us to understand which one can 

be more reasonably considered as the most appropriate critical combination of assumptions that jeopardizes 

the bank’s viability. In this regard the temporal dimension of the analysis and the large number of break-even 

points (solutions) obtained add further complexity to the issue. In fact, as explained, it is often necessary to 

consider several periods and several risk factor drivers to reach default conditions; that plurality of underlying 

assumptions (solutions) must be reduced and represented in a sensible way in order to allow us to process it 

and to derive a final solution. Simple statistical metrics, such as the average, can help us in synthesizing the 

multidimensional complexity of the information related to the break-even points. Once we have addressed this 

step, we need to apply a criterion to select the reverse stress test scenario from among all the breaking points 

solutions. In this paper, we propose two potential criteria, associated with two different ways of representing 

the reverse stress test scenario; of course, other criteria may be adopted as well.  

One criterion is based on a very simple statistical measure, the simple average of all the breaking point 

values. This criterion has the advantage of being of immediate understanding; it can be well suited whereas 

the solutions found have a low dispersion and the breach is triggered in a short period (one year). In these 

circumstances the rough approximation made by averaging the assumptions can be a reasonable criterion; in 

section 6.2.1. we apply this criterion reporting some simple statistics related to the reverse stress test performed 

(percentiles, absolute mean deviation, etc.) which help us to understand the ranging of the solutions.  

Another criterion that can be adopted is based on proximity to the starting point of the analysis. In other 

words, the scenario that involves, for all the risk factor variables considered, the shortest overall distance from 

the current conditions, considering somehow that combination of risk factor assumptions as the scenario that 

may occur before others in triggering the bank’s threshold. Minimizing that distance in a generalized context 

is not an easy task and raises some issues; we describe how to apply this criterion in section 6.2.2.  

 

6.2.1. The Average Reverse Stress Test Scenario 

The following tables (6-13) report for each CET1 ratio threshold (6,54% TSCR and 9,54% OCR) and for 

each forecast year: 

• The reverse stress test set of results for all the systemic risk drivers, indicating the average values, the 

mean absolute deviation and the 95% and 5% percentiles of the set of breaking point solutions 

determined through the SA optimization system. For a more immediate representation we did not report 

the results for all the three forecast years but only the average values over the three forecast years (in 

any case the results in the three years are quite similar). [Tables: 6, 8, 10, 12] 

• The reverse stress test shadow ratings associated to Italy and ITB; and the three years cumulated losses 

for each risk factors (distinguishing between Pillar 1 and Pilar 2); indicating the average values, the 

mean absolute deviation and the 95% and 5% percentiles, in so as to provide a measure of the dispersion 

of the different risk factor impacts. [Tables: 7, 9, 11, 13] 

The sovereign risk records include losses due to the impact on the government bond values and the second 

round effect of the related DTA on capital deductions; for sake of simplicity it did not include the impact on 

the cost of funding arising from the downgrade of the country’s and bank’s rating, that is instead included in 

the interest rate risk. Reputational risk reports all the impacts related to this factor, included the related increase 

in the cost of funding. 

 
44 The level of accuracy assumed in the exercise (i.e. the maximum tolerance accepted between the threshold and the capital ratio determined by 

the optimization system as solution) is five decimals. 
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The cumulative net total loss reported at the right of the tables [Tables: 7, 9, 11, 13] corresponds to the 

cumulated net income and, of course, it is lower than the sum of the impact of the several risk factors, since it 

takes into account the bulk of revenues generated by the bank (net of the operating costs).  

In relation to the reverse stress test scenario assumptions, we note that the dispersion of the values around 

the mean is quite low, making in this case the choice of the average as selection criterion less relevant. The 

same narrow dispersion can be observed for the risk factor impacts.  

The most relevant risk factor, as expected, is credit risk; followed by sovereign risk, notwithstanding the 

fact that we did not include in its impact the induced effect of increase in the cost of funding. The third risk 

factor for relevance is given by interest rate risks. In any case the total impact of all Pillar 2 risks, albeit very 

relevant, is always lower than the credit risk impact alone. Not surprisingly, market risk impact (leaving aside 

sovereign risk) is quite small, since for Italian banks this risk factor is not one of the most relevant. In fact, for 

the four banks considered, market trading historically never generated losses between 2010-2018; and the EBA 

EU-wide stress test 2018 also reported no losses from trading income within the three years of the adverse 

scenario, but rather a cumulative income of about € 2.3 billion
45

. 

The 6.5% TSCR threshold reverse stress test involved in 2 years a downgrade respect to the current ratings 

of 2 notches for the country rating and 3 notches for ITB bank; while in 3 years involved a 5 notches downgrade 

for both the country and ITB. A 5 notches downgrade also occurred for both the country and ITB in 2019 (1 

year) in the case of the 9.54% OCR threshold reverse stress test. 

The aggregated sample of the four banks at 31 Dec 2018 reported a CET1 capital of about € 97 billion, 

and existing business generated about € 15 billion in revenues (net of operating costs, before provision losses 

and trading income/losses), for a total theoretical buffer of available financial resources of € 112 billion under 

stable conditions. In order to reduce the capital profile below the 6.54% TSCR threshold, there would have to 

be a cumulative negative impact of about € -65 billion (€ -47 billion in terms of CET1 capital), which would 

require extremely severe, but not implausible, adverse conditions; consider that in the 2011-2013 period (the 

peak of the crisis), the four banks accumulated an overall net loss of about € 40 billion (including cumulated 

loan losses provisions of about € 55 billion) and with a maximum impact on AOCI of about € -7 billion 

(although the latter was only partially computed in own funds because of the Basel 3 phase-in). 

As a general comment on the reverse stress test exercise, we can note that the 9.54% OCR threshold is 

almost certainly breached in the severe adverse scenarios simulated. Consider that the 3-year probability of 

breach for that threshold assessed through the stress test is 97%, and that in the EBA EU-wide stress test for 

2018 as well, that threshold was almost triggered, with a transitional CET1 ratio reaching 9.57% in the third 

year of the adverse scenario
46

. Nevertheless, overall ITB seems to hold up well enough against the 6.5% TSCR 

threshold. In fact, breaching that threshold requires a huge cumulative loss that implies, in particular, extremely 

severe GDP drop and spread increase. In any case, we should keep in mind that in the worst 3-year period of 

the recent crisis (2011-2013), the average real GDP drop was 1.3% (cumulative growth -3.9%) and the spread 

reached a peak of 550 bps, records close to those highlighted by the reverse stress test analysis. A GDP drop 

close to that necessary to breach the 6.5% threshold can be found in the period 2007-2009, during which Italy’s 

real GDP suffered a yearly average drop over the three years of -1.7% and a cumulative drop of -5.1%.  

In the 1-year breach reverse stress test [Table 13], focused on 2019, the optimization process found only 

one breaking point solution, indicating a very low likelihood of breaching the threshold in a time period of just 

one year on the basis of the range of assumptions adopted. 

 

Tab. 6 – Reverse Stress Test Scenario – 2021 (113 Break-Even Scenarios): TSCR 6.5% Threshold  
(Average Values: 2019-21) 

 
Data Elaboration: by Streeling.Simulator. 

 
45 See “EBA: 2018 EU-Wide Stress Test”. 
46 Weighted average value recorded by the four banks in the exercise (Source “EBA: 2018 EU-Wide Stress Test”). 

GDP
D% BTP/BUND

SPREAD

EURIBOR

SWAP RATE

YoY% SX5E

VALUE

SX5E

VOL (360D)

MEAN -1.86% 3.70% 0.52% -8.63% 36.86%

MEAN.DEV 0.05% 0.19% 0.07% 2.48% 4.87%

95% PERCENTILE -1.74% 3.94% 0.61% -4.50% 43.67%

5% PERCENTILE -1.96% 3.26% 0.36% -12.93% 26.99%
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Tab. 7 – Risk Factors Impact – 2021 (113 Break-Even Scenarios): TSCR 6.5% Threshold  
(Average Rating: 2019-21 & Cumulative Million Values: 2019-21) 

 
Data Elaboration: by Streeling.Simulator. 

 

Tab. 8 – Reverse Stress Test Scenario – 2021 (259 Break-Even Scenarios): OCR 9.54% Threshold  
(Average Million Values: 2019-21) 

 

Data Elaboration: by Streeling.Simulator. 

 

Tab. 9 – Risk Factors Impact – 2021 (259 Break-Even Scenarios): OCR 9.54% Threshold 
(Average Rating: 2019-21 & Cumulative Values in Million : 2019-21) 

 
Data Elaboration: by Streeling.Simulator. 

 

Tab. 10 – Reverse Stress Test Scenario – 2020 (333 Break-Even Scenarios): OCR 9.54% Threshold  
(Average Values: 2019-20) 

 
Data Elaboration: by Streeling.Simulator. 

 

Tab. 11 – Risk Factors Impact – 2020 (333 Break-Even Scenarios): OCR 9.54% Threshold 
(Average Rating: 2019-20 & Cumulative Values in Million : 2019-20) 

 
Data Elaboration: by Streeling.Simulator. 

 

Tab. 12 – Reverse Stress Test Scenario – 2019 (1 Break-Even Scenario): OCR 9.54% Threshold 

 
Data Elaboration: by Streeling.Simulator. 
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RISK
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NET TOTAL LOSS

MEAN B+ B+ -58,026 -728 -2,580 -15,713 -4,333 -1,663 -39,506

MEAN.DEV - - 953 677 970 947 259 429 585

95% PERCENTILE BB BB- -55,880 455 -962 -13,225 -3,760 -723 -38,481

5% PERCENTILE B+ B+ -59,692 -2,199 -4,481 -16,993 -4,734 -2,460 -41,099

PILLAR 1 PILLAR 2

GDP
D% BTP/BUND

SPREAD

EURIBOR

SWAP RATE

YoY% SX5E

VALUE

SX5E

VOL (360D)

MEAN -0.50% 3.03% 0.47% -8.12% 35.13%

MEAN.DEV 0.21% 0.48% 0.08% 2.53% 4.65%

95% PERCENTILE -0.14% 3.83% 0.61% -3.67% 43.34%

5% PERCENTILE -0.87% 2.17% 0.33% -13.13% 26.58%
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NET TOTAL LOSS

MEAN BB BB- -39,516 -500 -2,267 -12,297 -4,109 -1,504 -18,574

MEAN.DEV - - 2,293 660 838 2,510 294 384 1,264

95% PERCENTILE BB+ BB -35,789 768 -760 -8,222 -3,581 -780 -16,483

5% PERCENTILE B+ B+ -43,601 -1,736 -4,017 -16,668 -4,649 -2,316 -20,877
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VALUE

SX5E

VOL (360D)

MEAN -1.42% 3.12% 0.48% -41.66% 35.62%

MEAN.DEV 0.30% 0.49% 0.08% 2.39% 4.74%

95% PERCENTILE -0.83% 3.89% 0.62% -37.04% 43.74%

5% PERCENTILE -1.90% 2.21% 0.34% -46.40% 26.62%
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NET TOTAL LOSS

MEAN BB BB- -32,384 -639 -1,590 -12,584 -2,328 -1,231 -18,928

MEAN.DEV - - 1,983 530 619 2,529 283 321 1,294

95% PERCENTILE BB+ BB -28,563 481 -434 -8,292 -1,779 -540 -16,829

5% PERCENTILE B+ B+ -35,711 -1,819 -2,944 -16,582 -2,857 -1,871 -21,228
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VOL (360D)

-1.90% 6.38% 1.21% -32.58% 42.42%
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Tab. 13 – Risk Factors Impact – 2019 (1 Break-Even Scenario): OCR 9.54% Threshold 
(Values in Million) 

 
Data Elaboration: by Streeling.Simulator. 

 

6.2.2. Reverse Stress Test Scenario Selection: The Criterion of Proximity  

Once we have determined the m breaking point scenarios, we may also consider, as a valid criterion to 

select the reverse stress test scenario, the one that is the closest to current market conditions. This is because 

that breaking point may be considered to be in some way associated with the combination of systemic risk 

factors that is the most likely to cause a reverse stress test scenario (although not in a strict statistical sense), 

or at least the combination of systemic risk factors that may trigger the breach before others. We can call this 

reverse stress test scenario selection criterion the criterion of proximity
47

. In this section we present a procedure 

that applies the criterion of proximity. 

Considering that each risk factor may have a different unit of measurement, the first necessary step is to 

normalize the data matrix related to the risk factors through a feature scaling technique. Here we can employ 

the “Min-Max Scaling” technique, thanks to which we can perform a linear rescaling of the solution values 

ranging between zero and one: 

(16) 𝑧𝑖𝑘 =  
𝑥𝑖𝑘 − 𝑥𝑖

𝑚𝑖𝑛

𝑥𝑖
𝑚𝑎𝑥 − 𝑥𝑖

𝑚𝑖𝑛
 

where 𝑧𝑖𝑘 is the normalized value of the i-th risk factor (with i = 1:n) in the k-th reverse stress test scenario 

(with k = 1:m); 𝑥𝑖𝑘 is the value of the i-th risk factor in the k-th reverse stress test scenario; 𝑥𝑖
𝑚𝑖𝑛 and 𝑥𝑖

𝑚𝑎𝑥 are 

respectively the minimum and maximum value of the i-th risk factor
48

. The minimum value corresponds to the 

starting point of the analysis, typically the latest available data (in our case study these are the records as of 31 

Dec 2018), in relation to which we want to minimize the distance in the reverse scenario. Therefore, for each 

risk factor, the smaller the values expressed by equation (16), the closer they are to the starting point economic 

conditions
49

. 

We can adopt the Euclidean distance as a reference metric for determining the risk factor combination that 

minimizes the distance from the origin or starting point
50

. Considering that for each reverse stress test analysis 

we have n risk factors and m scenarios, in terms of Euclidean space this implies an n-dimensional space with 

m points representing all the reverse break-even scenarios simulated; thus the problem of finding the nearest 

scenario to the starting point can be reduced to a simple minimization process, through which we select the 

combination of risk factor values which minimizes the Euclidean distance of m points from the origin; 

formally: 

(17) 𝐦𝐢𝐧 (√∑(𝑧𝑖𝑘)2

𝒏

𝒊=𝟏

, ⋯ , √∑(𝑧𝑖𝑘)2

𝒏

𝒊=𝟏

)                   with 𝑘 = 1: 𝑚 

Intuitively, the minimization process of finding the set of risk factor assumptions closest to the starting 

point economic conditions identifies the scenario that can be also considered as the most likely to occur among 

 
47 It follows the same logic adopted in other works; in this regard see: Breuer et al (2009), Flood and Korenko (2015), Grundke and Pliszka (2018). 
48 An alternative technique could be rank normalization, through which each risk factor value is replaced by its rank in that sample. Another 

common normalization method involves subtracting from each element of the data matrix the average of the data series and dividing it by the 

corresponding standard deviation, that is: 

(a) 𝑧𝑖𝑘 =  
𝑥𝑖𝑘 − 𝑥̅𝑖

𝜎𝑥𝑖

 

where 𝑥̅𝑖 represents the mean and  𝜎𝑥𝑖
  the standard deviation of the i-th risk factor within the n scenarios generated. This kind of normalization, unlike 

the Min-Max Scaling technique, is capable of correctly managing anomalous values but not of returning normalized values in the same scale as in Min 

Max Scaling. Some authors suggest using the mean absolute deviation instead of the standard deviation, in order to express the denominator in the same 
unit of measurement of the numerator (see Kaufman and Rousseeuw, 2005 ). 

49 If we had variables expressed in terms of rate of change, such as GDP growth rate, the minimum would correspond by definition to a zero rate 

(i.e. in practice we do not move from current conditions). 
50 See Gower (1982, 1985). 
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those selected through the optimization process.  

The process described has been generalized as an n dimensional space, although in most cases it can be 

limited to just the few risk factors that determine the greatest part of the impact in the reverse stress test. For 

the sake of simplicity, we provide a graphical representation of the selection process that considers only the 

two main risk factors in the reverse stress test performed, GDP and the BTP-Bund spread, which cover more 

than 80% of the impact on CET1 ratio. In Fig. 12, we plotted all the combinations of GDP and spread values 

associated with the 113 breaking points found through the optimization system for the 6.5% TSCR threshold 

reverse stress test
51

. The red dot indicates the combination of GDP and spread changes that minimizes the 

Euclidean distance from the origin (starting point market conditions) among all the breaking points. Consider 

that in order to make records easily visualizable, we reduced the scale of the axes in the graph and did not set 

the origin at zero, since the break-even points are quite concentrated in a narrow area. That may generate a 

sort of biased perspective in the graph; i.e. the break-even points may look at first glance closer to the origin 

than they effectively are.  

In determining the closest scenario, we can also consider introducing risk factor weights into the 

minimization process. To this end, all we need to do is add an additional parameter to the minimization process 

formula given by the risk factor weight, so as to calculate the weighted Euclidean distance. Thence equation 

(17) becomes: 

(18) 𝐦𝐢𝐧 (√∑ 𝑤𝑖(𝑧𝑖𝑘)2

𝒏

𝒊=𝟏

, ⋯ , √∑ 𝑤𝑖(𝑧𝑖𝑘)2

𝒏

𝒊=𝟏

)                   with 𝑘 = 1: 𝑚 

where 𝑤𝑖 is the weight attributed to the i-th risk factor. The weights could be assigned in relation to the risk 

factor’s contribution to the target variable (in our case CET1 ratio) in determining the 
 

reverse breaking points, 

or any other subjective criterion considered as eligible
 52

.  

A special case of weighted Euclidean distance is given by the Mahalanobis distance. The advantage of this 

kind of metrics is that it takes into account the correlation between the variables and the standard deviations 

of the risk factors; this feature makes the Mahalanobis distance particularly useful in all the cases in which risk 

factor correlation has not been adequately treated within the forecast model. 

Considering that for each risk factor in the k-th scenario the weighted Euclidean distance can be 

represented in matrix terms as:  

(19) 𝑑𝑖𝑘 = 𝐳𝑖𝑘 ′𝐖𝐳𝑖𝑘
 

where 𝐳𝑖𝑘 represents the vector that defines the coordinates respect to the origin for each of the n risk factors 

and for the m scenarios, while 𝐖 represents a n×n diagonal matrix that includes the weights for the n risk 

factors. By substituting in the 𝐖 matrix the inverse of the covariance matrix 𝐒−𝟏, we obtain the Mahalanobis 

distance as:  

(20) 𝑑𝑖𝑘 = 𝐳𝑖𝑘 ′𝐒−𝟏𝐳𝑖𝑘
 

A low value of the Mahalanobis distance implies a scenario that is close to the origin; therefore, even in 

this case the most plausible reverse scenario is the one that minimizes the Mahalanobis distance. We should 

expect that explicative variables which are highly correlated in stressed scenarios, such as those related to 

reverse stress test breaking points, have low Mahalanobis distances. In addition, a characteristic of the 

Mahalanobis distance is that it is scale-invariant, being insensitive to the variance of the underlying variables, 

which means that it can be calculated directly on the native variables.
53

 

Ultimately, to select the most plausible reverse stress test scenario we suggest adopting the proximity 

criterion, which in our opinion is a sensible approach for this kind of exercise. 

 

 
51 For a more immediate comprehension of the data we reported non-normalized values; these are average values recorded within the time period 

of the analysis. 
Consider that, as Kaufman and Rousseeuw (2005) note, the weight attribution corresponds to a rescaling of the coordinates through a factor 

√𝑤1, ⋯ , √𝑤𝑛 .  
53 In fact, it can be demonstrated that the Mahalanobis distance is also equal to the weighted Euclidean distance, calculated on the standardized 

variables (see footnote 45) and adopting the inverse correlation matrix for the weights. If all the variables are uncorrelated, the Mahalanobis distance 
coincides with the Euclidean distance calculated on the standardized variables. 
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Fig. 12 – GDP & BTP-BUND Spread: The Criterion of Proximity  

 
Data Elaboration: by Streeling.Simulator. 

 

6.3. Optimization System for Calibration of Thresholds of Early Warning Risk Indicator 

The methodology described for reverse stress testing can also be used for calibrating the thresholds of key 

risk indicators (KRI) for early warning purposes within the Risk Appetite Framework. This can be done by 

selecting the risk factor variable (KRI) to be optimized and by properly setting the relevant threshold to be 

triggered in the reverse analysis process.  

For example, assuming that sovereign risk is a relevant risk factors for an Italian bank, to be strictly 

monitored within its Risk Appetite through a KRI given by the BTP-Bund spread; in order to set a threshold 

for that indicator that provides effective early warning signals capable to promptly activate the escalation 

process and so prevent potentially dangerous situations, we can proceed in the following way. Once we have 

set the key capital indicator threshold whose breach we want to prevent (e.g. OCR CET1 ratio of 9.54%) and 

added a tolerance buffer (e.g. 0.46%) aimed at creating an early warning area; we can run a reverse stress test 

on the 10% CET1 ratio threshold (9.54%+0.46%) as described that identifies the breaking points on the edge 

of that preset early warning area. For each breaking point we can get the associated spread value; then by 

applying the preferred selection criteria (e.g. average spread in case the breaking points are quite close; the 

spread solution that is closest to the market value at the starting point; the most likely spread solution; etc.), 

we can easily get the spread value that indicates (with the desired tolerance level) the potential triggering of 

the CET1 ratio threshold. In other words, thanks to the results of the simulation process, we can expect that 

when the spread reaches the value determined through reverse analysis, we enter in an area of high risk of 

breaching the capital ratio in the next future.  

This technique can be used to easily calibrate all the KRIs of the Risk Appetite framework according to 

the desired tolerance level.  

 

 

7. Conclusions 

Prudential banking regulations and supervisors require banks to perform reverse stress tests within their 

risk assessment framework. This kind of exercise can be a useful device to understand the sources of risk and 

the triggering levels of some primary systemic risk drivers, anyway to effectively assess a bank’s overall risk 

(financial fragility degree) we should do something different and somehow simpler: estimate its probability of 

breach. Notwithstanding the urgency for reverse stress testing, research and best practices offer little 
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methodological support to appropriately address the issue. Reverse stress testing is a complex problem with 

multiple solutions, since there are many ways in which a bank can breach the relevant threshold of its key risk 

indicator. Moreover, while in assessing the probability of breach we simply need to detect all the risk factors 

values which can cause the key risk indicator to fall below the relevant threshold in the breach area, in the 

reverse stress test we need to identify only those solutions which trigger the threshold and lie on the edge of 

the breach area. In order to resolve the reverse stress test problem, we need to find an efficient quantitative 

technique to determine all those combinations of risk factors that can trigger the threshold, plus a criterion to 

select from among those solutions the one that we can consider the reverse stress test scenario.  

In this article we presented a stochastic simulation optimization system to perform bank reverse stress tests 

aimed at detecting the reverse scenario, i.e. the set of assumptions of key systemic risk drivers that triggers the 

bank’s breach, defined as capital ratios below the regulatory minimum threshold. The quantitative technique 

employed is based on an optimization stochastic system: the Simulated Annealing with a multi-start strategy 

configuration.  

The methodology identifies the conditions of the primary risk factors that determine all the breaking points 

on the edge of the distress area, providing a meaningful set of critical assumptions that aids in understanding 

the bank’s vulnerabilities and its sources of risk, thus enabling the user to define the reverse stress test scenario.  

Regarding selection criteria to derive a scenario from the set of all possible solutions of the reverse stress 

test, we suggest several possibilities and also provide a procedure based on the criterion of proximity to the 

starting point of the analysis, determined by minimizing the Euclidean distance (or the Mahalanobis distance), 

which in our opinion may be the most reasonable generalised criterion.  

The proposed framework is quite flexible and allows the user to easily introduce additional risk factors, 

more refined satellite models and a greater break-down of variables, providing a practical and effective solution 

to a very challenging computational problem. The same methodology can also be applied to calibrate early 

warning thresholds for key risk indicators, by properly setting the breaching conditions that the optimization 

system has to resolve.  

Since in reverse stress testing, we must simulate default or near-default scenarios, we must take into 

account in the model all the relevant risk factors (including those that are difficult to quantify) and their 

feedback and second round effects. Therefore, we also present a possible way to model some relevant Pillar 2 

risks and their interlinkages, such as sovereign, interest rate and reputational risks.  

We also provide a practical example of the methodology applied to the case of a ‘bank’ represented by an 

aggregated financial statement of the main four Italian banks, showing how the main risk factors can be 

managed within the proposed framework and the reverse stress test results interpreted.  

The methodological approach presented is well suited to be applied by banks’ risk managers and 

supervisors in all enterprise-wide bank risk assessment processes that require a reverse stress test exercise: 

RAF, ICAAP, ILAAP, Recovery Plan, SREP.  
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Appendix 1: ITB Aggregated Financial Statement 

 

 

Tab A1 - Balance Sheet 

 
 

ASSETS 2015 2016 2017 2018

Cash and Cash Equivalents 21,066 23,711 75,635 42,999

Financial Assets at FVTPL 240,035 229,312 217,504 135,455

a. Financial Assets Held for Trading 151,713 136,553 120,040 108,966

b. Financial Assets Designated at Fair Value 88,321 92,759 97,464 219

c. Financial Assets Mandatorily at Fair Value 0 0 0 26,270

Financial Assets at FVTOCI 279,165 278,577 273,433 324,373

Financial Assets at Amortised Cost 1,157,947 1,124,032 1,240,383 1,283,404

a. Loans to Banks 121,991 136,117 156,445 158,345

b. Loans to Costumers 1,035,956 987,915 1,083,937 1,125,059

1. Performing Loans 939,620 913,706 1,023,313 1,086,445

2. Non Performing Loans 174,887 152,915 135,617 96,196

3. Reserve for Loan Losses 78,551 78,706 74,993 57,581

Hedging Derivatives 13,558 11,654 8,062 7,849

Change in Value of Macro-Hedged Financial Assets 2,899 2,769 2,093 2,702

Investments 10,073 8,886 8,482 8,133

Reinsurer's Technical Reserves 22 17 16 20

Tangible Assets 19,995 17,626 19,674 20,521

Intangible Assets 16,890 14,032 14,152 15,592

Tax Assets 37,663 36,327 38,236 39,554

a. Current 5,988 5,103 7,545 6,059

b. Deferred 31,675 31,224 30,691 33,495

Non-Current Assets and Discontinued Operations 2,968 46,249 1,845 4,693

Other Assets 22,563 21,235 22,719 19,666

TOTAL ASSETS 1,824,843 1,814,428 1,922,234 1,904,961

LIABILITIES AND SHAREHOLDERS' EQUITY 2015 2016 2017 2018

Financial Liabilities Measured at Amortised Cost 1,351,022 1,320,035 1,444,892 1,446,227

a. Due to Banks 202,328 206,642 267,166 283,388

b. Due to Customers 842,406 859,193 942,621 961,507

c. Securities Issued 306,288 254,200 235,105 201,332

Financial Liabilities Held for Trading 121,730 122,097 105,422 91,920

Financial Liabilities Designated at Fair Value 59,709 66,417 74,636 77,920

Hedging Derivatives 16,172 15,481 11,923 14,090

Change in Value of Macro-Hedged Financial Liabilities 6,138 5,257 3,529 3,752

Tax Liabilities 4,856 3,944 4,495 3,925

Liabilities Associated to Disposal Groups Held for Sale 2,222 36,142 449 801

Other Liabilities 34,391 31,803 34,577 32,503

Pension Liabilities 3,289 3,186 3,086 2,572

Funds for General Banking Risks 14,909 15,234 15,721 17,858

Insurance Provisions 88,173 91,424 86,653 82,674

TOTAL LIABILITIES 1,702,609 1,711,019 1,785,383 1,774,243

Accumulated Other Comprehensive Income -4,337 -5,938 -4,979 -9,038

Reimbursable Shares 0 0 0 0

Capital Instruments 2,765 4,500 8,713 8,713

Reserves 25,971 27,082 33,427 40,010

Paid Instruments 87,827 84,641 82,268 81,424

Preferred Stock -87 -88 -111 -131

Net Income 5,269 -11,191 16,096 8,309

GROUP SHAREHOLDERS' EQUITY 117,409 99,007 135,415 129,287

Minority Interests 4,825 4,402 1,436 1,431

SHAREHOLDERS' EQUITY 122,234 103,409 136,851 130,718

LIABILITIES AND SHAREHOLDERS' EQUITY 1,824,843 1,814,428 1,922,234 1,904,961
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Tab A2 – Income Statement 

 
 

Tab A3 – Regulatory Capital and RWA 

 

INCOME STATEMENT 2015 2016 2017 2018

Interest and Similar Income 40,115 33,316 32,318 30,787

Interest Expenses 15,209 11,578 9,866 8,427

NET INTEREST INCOME 24,905 21,738 22,451 22,361

Net Commission Income 18,045 14,895 17,318 17,903

Net Gains (Losses) on Financial Assets 2,305 2,720 2,505 1,295

a. Dividends and Similar Income 842 900 726 584

b. Net Gains on Trading Activity 1,542 1,861 1,735 818

c. Net Gains on Hedging Activities -79 -41 43 -107

Net Gains (Losses) on Financial Assets/Liabilities at FVTPL 968 952 1,188 3,782

NET INTEREST AND OTHER BANKING INCOME 48,562 42,065 44,307 46,073

Net Adjustments for Impairment of (-/+): -9,067 -20,262 -7,841 -7,533

a. Loans to Customers -8,717 -19,088 -6,737 -7,482

b. Financial Assets at FVTOCI -350 -1,174 -1,104 -50

Net Gains/Losses on Contractual Changes 0 0 0 -53

NET INCOME FROM BANKING ACTIVITIES 39,495 21,803 36,466 38,487

Net Earned Premiums 12,418 8,433 6,972 8,554

Net Gain (Loss) from Insurance Activities -14,680 -10,508 -9,185 -10,364

NET GAINS FROM FINANCIAL AND INSURANCE ACTIVITIES 37,233 19,728 34,253 36,677

Administrative Expenses -30,009 -30,024 -28,799 -27,036

Net Adjustments to the Value of Tangible & Intangible Assets -2,470 -2,856 -2,497 -2,450

Other Operating Income (Expense) 1,506 876 9,331 861

OPERATING EXPENSES -30,974 -32,004 -21,965 -28,625

OPERATING INCOME 6,259 -12,276 12,288 8,052

Income (Loss) on Equity Investments 978 371 1,928 434

Goodwill Impairment 0 -540 -393 0

Other Non-Operating Income/Losses 211 891 189 683

GAIN (LOSS) FROM CURRENT OPERATIONS BEFORE TAXES 7,448 -11,554 14,013 9,169

Taxes on Income for the Period from Current Operations -1,508 -786 -993 -621

GAIN (LOSS) FROM CURRENT OPERATIONS AFTER TAXES 5,940 -12,339 13,019 8,549

Gain (Loss) on Fixed Assets due for Disposal, net of Taxes -243 1,664 3,444 14

INCOME BEFORE MINORITY INTEREST 5,698 -10,676 16,463 8,563

Income Attributable to Minority Interest -429 -515 -367 -254

NET INCOME 5,269 -11,191 16,096 8,309

OWN FUNDS 2015 2016 2017 2018

Paid Instruments 86,660 86,875 80,992 80,758

Retained Earnings 20,826 22,512 26,228 30,422

Profit or Loss Eligible 1,527 0 9,124 4,087

Accumulated Other Comprehensive Income (AOCI) 4,649 3,517 6,691 -3,227

Minority Interest given recognition in CET1 Capital 2,849 2,552 443 294

COMMON EQUITY TIER 1 BEFORE REGULATORY ADJUSTMENTS 116,511 115,455 123,478 112,334

CET1 Capital Instruments -342 -238 -149 -252

Goodwill & Other Intangibles Assets -16,617 -15,405 -13,262 -13,929

Regulatory Adjustments to AOCI 652 772 723 625

Cumulative Gains/Losses due to Chg. in Own Credit Risk on FV Liabilities -178 -183 -37 -490

Negative Amounts resulting from the calculation of Expected Losses -816 -78 -530 -417

Defined Benefit Pension Fund Assets -44 -37 -43 -40

CET1 Deductions -1,344 -3,696 -5,493 -7,682

c. Non Convertibles DTA Deductions -254 -1,099 -2,635 -3,142

d. Significant Financial Holdings Deductions -1,076 -1,631 -2,262 -2,614

e. Holdings and DTA 15% and 17,65% Threshold Deductions -14 -965 -597 -1,926

Transitional Adjustments for IFRS9 0 0 0 5,043

Other CET1 adjustments -3,896 -13,681 -623 1,846

REGULATORY ADJUSTMENTS AT COMMON EQUITY TIER 1 -22,584 -32,547 -19,415 -15,297

COMMON EQUITY TIER 1 CAPITAL 93,927 82,909 104,064 97,037

Capital AT1 Instruments 6,771 7,906 11,855 10,623

AT1 Instruments of Subsidiaries 98 14 14 29

ADDITIONAL TIER 1 BEFORE REGULATORY ADJUSTMENTS 6,868 7,920 11,868 10,652

Decuctions of AT1 Instruments -43 -86 -70 -77

Other AT1 Adjustments -1,115 -1,023 -346 0

REGULATORY ADJUSTMENTS AT ADDITIONAL TIER 1 -1,158 -1,109 -416 -77

ADDITIONAL TIER 1 CAPITAL 5,710 6,811 11,452 10,575

TIER 1 CAPITAL 99,638 89,720 115,516 107,612

Capital T2 Instruments 22,575 21,864 21,214 17,699

T2 Instruments of Subsidiaries 1,171 889 687 553

IRB Excess of Provisions over Expected Losses Eligible 19 1,234 1,302 1,155

TIER 2 BEFORE REGULATORY ADJUSTMENTS 23,765 23,987 23,203 19,408

T2 Instruments Deductions -1,297 -1,303 -1,793 -1,803

Other T2 adjustments -553 -412 -94 0

REGULATORY  TIER 2 ADJUSTMENTS -1,850 -1,716 -1,887 -1,803

TIER 2 CAPITAL 21,915 22,271 21,316 17,604

TOTAL REGULATORY CAPITAL 121,552 111,992 136,832 125,216

RISK WEIGHTED ASSETS 2015 2016 2017 2018

TOTAL RWA 816,037 805,038 774,994 771,985

Credit and Counterparty Risk RWA 704,069 694,652 661,662 634,281

Market Risk RWA 31,858 36,308 35,584 33,919

Operational Risk RWA 72,369 67,148 60,303 57,424

Other Risks RWA 7,740 6,930 17,445 46,361

REGULATORY CAPITAL RATIO 2015 2016 2017 2018

CET1 RATIO 11,510% 10,299% 13,428% 12,570%

T1 RATIO 12,210% 11,145% 14,905% 13,940%

TOTAL CAPITAL RATIO 14,895% 13,911% 17,656% 16,220%
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Appendix 2: Reverse Stress Testing Exercise – Other Assumptions 

The assumptions made reflect the constraints of the limited set of data publicly available for the four banks 

considered in the sample and therefore do not represent a generalised standard model. Of course, a richer 

dataset would enable better assumptions.  

 

Balance Sheet 

According to the static balance sheet general assumption, almost all of the balance sheet forecast variables 

are assumed to be constant and equal to end-of-2018 records, with a few exceptions, namely: 

3) Deposits (“Financial Liabilities Measured at Amortised Cost – Due to Customers”), which are basically 

linked to the size of the bank’s business and assumed to be determined as a percentage of total assets 

(50.47%), set on the basis of the 2018 ratio between the two items, and then exposed to reputational 

risk and thus to a stochastic decrease factor.  

4) Debt due to banks (“Financial Liabilities Measured at Amortised Cost – Due to Banks”) and Loans to 

banks (“Financial Assets Measured at Amortised Cost – Loans to Banks”), which act as plug-in 

variables in the forecast model, ensuring the balancing of total assets and liabilities. 

All other financial liabilities issued (“Financial Liabilities Measured at Amortised Cost – Securities 

Issued”) are stable in their total amount through the entire forecast time horizon, but, as already explained in 

the interest rate risk section, their related interest expenses change according to their renewal and fixed-variable 

rate mix. In this regard, we assume a stable composition of 78.5% of variable rate liabilities and 21.5% of 

fixed rate liabilities; while the amount of liability issue renewal (based on the current maturities of securities 

issued of the four banks) is: € 88,700 million in 2019; € 184,541 million in 2020; € 177,703 million in 2021
54

. 

The Minority Interests are assumed to be determined according to the same percentage of Total 

Shareholders’ Equity reported in 2018, kept constant over the entire forecast year. 

 

Income Statement 

The following forecast variables are fully determined by the dynamics of the risk factors described above: 

 

VARIABLES ASSUMPTIONS 

Interest Income Determined through the interest rate risk model 

Interest Expenses Determined through the interest rate risk model 

Net Gains/Losses on Financial 

Assets/Liabilities At FVTPL 
Determined through the sovereign risk model 

Net Gains/Losses on Trading Activity Determined through the market risk model and sovereign risk model 

Net Adjustment for Impairment Determined through the credit risk model and sovereign risk model 

Other Non-Operating Income/Losses Determined through the operational risk model 

 

The following forecast variables are determined partly by connecting them with the size of the bank’s 

business and partly by the dynamics of the risk factors:  

 

VARIABLES ASSUMPTIONS 

Net Commission Income 

Determined as a percentage of total assets (0.94%), set on the basis of the 2018 

ratio between the two items; and then exposed to reputational risk and thus to a 

stochastic decrease factor. 

Administrative Expenses 

Determined as a percentage of total assets (1.42%), set on the basis of the 2018 

ratio between the two items; and then exposed to reputational risk and thus to a 

stochastic increase factor. 

 

 
54 Data source: “CAST <GO>” (Capital Structure) function in Bloomberg.  
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For the residual forecast variables, we applied the following assumptions: 

 

VARIABLES ASSUMPTIONS 

Dividends and Similar Income 

We assumed an income expressed in terms of percentage of total financial assets 

and equal to the record reported in 2018, kept constant over the entire forecast 

year. 

Net Gains on Hedging Activities We assumed the value recorded in 2018 constant over the entire forecast period. 

Net Gains/Losses on Contractual Changes We assumed the value recorded in 2018 constant over the entire forecast period. 

Net Earned Premiums 
We assumed equal to average value of the last five years and constant over the 

entire forecast period. 

Net Gain (Loss) from Insurance Activities 
We assumed equal to average value of the last five years and constant over the 

entire forecast period. 

Net Adjustments to the Value of Tangible & 

Intangible Assets 
0 

Other Operating Income (Expense) 
We assumed equal to average value of the last five years and constant over the 

entire forecast period. 

Income (Loss) on Equity Investments 
We assumed equal to average value of the last five years and constant over the 

entire forecast period. 

Goodwill Impairment 0 

Taxes Application of the Italian tax system (Ires and Irap)  

Gains (Losses) on Fixed Assets Due for 

Disposal, Net of Taxes 
0 

Income Attributable to Minority Interest 
We assumed the same percentage of income reported in 2018 to be constant over 

the entire forecast year. 

 

Regulatory Capital and RWA 

Regulatory capital is determined in each forecast year by taking into account the impacts of all risk factors 

on equity through P&L or directly on capital (e.g. impact of sovereign risk on AOCI).  

Additional Tier 1 and Tier 2 capital instruments are considered constants through the entire forecast time 

period, without considering any effect arising from new issues, maturity of existing instruments or regulatory 

amortization. 

Deferred Tax Assets (DTAs) are determined according to the fiscal impact arising from the scenario and 

taken into account for the capital deductions according to the treatment set by the prudential regulation 

(deduction from CET1 for the amount exceeding the threshold and inclusion in RWA for the amount below 

the threshold).  

We considered the phasing-out of the positive prudential filter granted for the first time adoption (FTA) 

of the accounting principle IFRS9, according to which banks can temporarily benefit from the prudential 

sterilization of the negative impact of the FTA. More specifically, of the four banks considered in the sample, 

Intesa Sanpaolo, Gruppo BPM and Gruppo UBI decided to take advantage of the transitional prudential filter, 

while Unicredit did not. Therefore, on the basis of the 2018 financial statement Pillar 3 information set, we 

determined the evolution of the aggregated prudential filter through the forecast time period, adopting the 

following regulatory phasing-out timetable: 95% in 2018; 85% in 2019; 70% in 2020; 50% in 2021.  

With regard to capital requirements, we determined credit risk RWA on the basis of a constant risk weight 

on total net exposure, set equal the value recorded in 2018 (49.42%) for performing loans, while for non-

performing loans we applied a 100% risk weight. RWA related to the other risks (market and operational) have 

been set constant and equal to the 2018 records.  
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